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Abstract
Background: The transporter associated with antigen processing (TAP) is a critical component
of the major histocompatibility complex (MHC) class I antigen processing and presentation
pathway. TAP transports antigenic peptides into the endoplasmic reticulum where it loads them
into the binding groove of MHC class I molecules. Because peptides must first be transported by
TAP in order to be presented on MHC class I, TAP binding preferences should impact significantly
on T-cell epitope selection.

Description: PREDTAP is a computational system that predicts peptide binding to human TAP. It
uses artificial neural networks and hidden Markov models as predictive engines. Extensive testing
was performed to valid the prediction models. The results showed that PREDTAP was both sensitive
and specific and had good predictive ability (area under the receiver operating characteristic curve
Aroc>0.85).

Conclusion: PREDTAP can be integrated with prediction systems for MHC class I binding peptides
for improved performance of in silico prediction of T-cell epitopes. PREDTAP is available for public
use at [1].

Background
Peptides that bind major histocompatibility complex
(MHC) class I molecules serve as recognition targets for
cytotoxic CD8+ T cells (CTLs). The major function of CTLs
is recognition and destruction of infected (e.g. viruses,
bacteria, parasites or fungi), mutated (e.g. cancer), or for-
eign (e.g. transplants) cells. CTLs recognize short anti-
genic peptides (T-cell epitopes) presented by MHC class I

molecules that mainly originate from degradation of
cytosolic proteins. Intracellular antigen processing path-
ways determine the selectivity of peptides which are avail-
able for binding to MHC class I molecules and are thereby
important targets of CTL responses [2].

MHC class I antigen processing pathway steps include
proteosomal cleavage of proteins into shorter peptides,
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translocation of peptides into the endoplasmic reticulum
(ER) by TAP, optional ER trimming by aminopeptidases,
insertion of peptides into the binding groove of MHC
molecules, and transport of peptide/MHC complexes to
the cell surface for presentation to CTLs [3]. TAP is a trans-
membrane protein responsible for the transport of anti-
genic peptides into the ER. TAP demonstrates peptide
binding selectivity and the affinity of a particular peptide
for TAP influences the probability of its presentation by
MHC class I molecules. Peptides that are 8–16 amino
acids long and have sufficient binding affinity are effi-
ciently translocated by TAP into the ER, while longer pep-
tides may be transported but with lower efficiency [4].
Human TAP (hTAP) is a heterodimer that has two subu-
nits hTAP1 and hTAP2. TAP belongs to the ATP-binding
cassette transporters and each subunit protein has one
transmembrane domain and one ATP-binding binding
domain. The genes for human TAP1 and TAP2 are located
in the MHC II locus of chromosome 6 and comprise 10 kb
each [5]. A more detailed description of function, struc-
ture, expression of TAP can be found in [6].

The efficiency of TAP-mediated translocation of a peptide
is proportional to its TAP-binding affinity [7,8]. Muta-
tions, such as premature stop codons, or deletions of
either hTAP1 or hTAP2 impair peptide transport into ER
and result in a significant reduction of surface expression
of peptide/MHC complexes [9]. TAP deficient cells have
low cell-surface HLA class I expression shown to range
from 10% (HLA-A2) to 3%, (HLA-B27 and -A3) [10]. The
majority of the peptides presented by HLA class I on cell
surface are thus dependent on TAP.

Identification of T-cell epitopes is a highly combinatorial
problem. The diversity of human immune responses to T-
cell epitopes originates from two sources – high allelic var-
iation of the host (both HLA molecules and T-cell recep-
tors) and high variation of target antigens, particularly
those derived from viruses. Computational models are
routinely used for pre-screening of potential T-cell
epitopes and minimization of the number of necessary
experiments. Most developments have focused on mode-
ling and prediction of peptide binding to MHC molecules
[see [11]]. Amongst computational models of peptide
binding to hTAP that have been developed are binding
motifs [7], quantitative matrices [12-14], artificial neural
networks (ANN) [12,15], and support vector machines
(SVM) [16]. Combined computational methods that inte-
grate multiple critical steps – proteasome cleavage, TAP
transport, and MHC class I binding have been proposed as
a supporting methodology for prediction of high proba-
bility targets for therapeutic peptides and vaccines [17].
Several combined computational applications of models
of antigen processing and presentation have been
reported [18-22]. Testing results indicate that these pre-

dictions produce a lower incidence of false positives and
reduce the number of experiments required for identifica-
tion of T-cell epitopes. However, these combined predic-
tions need to be taken with a dose of caution. Alternative
pathways for both proteolytic degradation [23] and TAP
transport [24] have been reported. In some cases TAP-
deficient individuals have normal immune responses
[25], suggesting that TAP-independent immune responses
are sufficient to provide effective protection from some
intracellular pathogens. Nevertheless, the proteasome-
TAP-MHC class I pathway is responsible for 90–97% of
expression of peptide/MHC Class I complexes and there-
fore is critical for the identification of target epitopes for
immunotherapies and vaccines.

We developed PREDTAP, a computational system that pre-
dicts peptides binding to hTAP. It uses ANN and hidden
Markov models (HMM) as predictive engines. Extensive
testing was performed to validate the prediction models
and ensure that PREDTAP is both sensitive and specific.
PREDTAP is available for public use at [1].

Materials and methods
Training dataset
There are 493 nonamer peptides in the training dataset
(Table 1) [12,15]. A single duplicate peptide was removed
from the data set reported in the original references. The
binding scores range from zero to ten. Scores 7–10 denote
high peptide/TAP binding affinity, 5–6 moderate binding
affinity, 3–4 low binding affinity and scores 0–2 denote
non-binding. The dataset is available in the supplemen-
tary materials.

Artificial Neural Network
3-layer backpropagation ANN models (in-house soft-
ware) were used for the development of the PREDTAP

server. The learning method was error backpropagation
with a sigmoid activation function. The inputs to the ANN
were the binary strings representing nonamer peptides.
There are twenty naturally-occurring amino acids encoded
by the standard genetic code. Each amino acid in a non-
amer peptide can be encoded as a binary string of length
20 with a unique position set to "1" and other positions
set to "0", resulting in a binary string of length 180 to rep-
resent the nonamer. For example the first two amino
acids, by alphabetic order, alanine (A) and cysteine (C)
are encoded by 10000000000000000000 and
01000000000000000000 respectively, and the last amino
acid tyrosine (Y) is encoded by 00000000000000000001.
The outputs were binding scores ranging from zero to ten.
The higher the score, the higher the possibility of the pep-
tide being a TAP binder. Two ANN architectures were
used, 180-2-1 and 180-1-1. The maximum number of the
ANN training cycles was set to 300. The training was
repeated for four times, and four sets of weights were
Page 2 of 12
(page number not for citation purposes)



Immunome Research 2006, 2:3 http://www.immunome-research.com/content/2/1/3
obtained. The value of momentum was 0.5 and of learn-
ing rate 0.2. The error threshold for stopping training was
0.01.

Hidden Markov Model
HMMs have been applied successfully in prediction of
HLA class I-binding peptides [26,27]. An HMM is defined
by a finite set of states representing possible states of the
modeled system. Some of these states may be directly
observable, but some are not, and are denoted as hidden.
Biological problems are often sequential and HMM fre-
quently utilize sequential ordering of system states. A
change (transition) of the system from one state to
another is governed by statistical regularities. The proba-
bility distribution of the system states can be estimated
from the data. In the present study, we used a first-order
HMM, in which the current system state is determined
only by the preceding state, as described in [26].

Cross-validation
Cross-validation is a method for error rate estimation. It
implements a simple idea: the dataset of size n samples is
partitioned into two parts, the model parameters are esti-
mated using one set and the goodness-of-fit criterion eval-
uated on the second set. The cross-validation estimates the
goodness-of-fit criterion. Cross-validation tends to overfit
when selecting a correct model – it may choos an overly-
complex model for the given dataset. There is some evi-
dence that for model selection multifold cross-validation,
where more than one samples are deleted form the train-
ing set in each comparison, performs better than a simple
leave-one-out cross-validation[28]. In our experiments,
10-fold cross-validation was performed to evaluate the
performance of the classifiers.

Prediction performance measurement
The predictive performance of the models was evaluated
by sensitivity (SE) and specificity (SP) measures. Sensitiv-

ity, SE = TP/(TP+FN), indicates percentage of correctly pre-
dicted binders, where TP stands for number of true
positive predictions (experimental binder predicted as
binder) and FN stands for number of false negative pre-
dictions (experimental binder predicted as non-binder).
Specificity, SP = TN/(TN+FP), indicates percentage of cor-
rectly predicted non-binders, where TN stands for number
of true negative predictions (experimental non-binder
predicted as binder) and FP stands for number of false
positive predictions (experimental non-binder predicted
as binder). For the studied problem, we consider values of
SP >0.8 useful in practice.

The receiver operating characteristic (ROC) curve analysis
provided a measure for overall prediction accuracies of
prediction models [29]. The ROC curve is generated by
plotting SE against (1-SP) for various classification thresh-
olds. As a rough guide, the area under ROC (Aroc) value
1.0 represents a perfect prediction, values 0.9 to 1.0 repre-
sent excellent accuracy, 0.8 to 0.9 represent good accuracy,
0.7 to 0.8 represent marginal accuracy, 0.5 to 0.7 repre-
sents poor accuracy, while 0.5 represent predictions that
indicate random choice [29].

The prediction performance of PREDTAP(ANN & HMM)
was compared with that of publicly available predictive
systems, TAPPred (SVM & cascade SVM) [16] and
SVMTAP [19]. Three proteins, human papillomavirus type
16 E6 (P03126) with experimentally identified HLA-A3
binders [30], E7 (P03129) with a single HLA-A3 binder
[30] peptides and human cancer antigen KM-HN-1
(NP_689988.1) with three HLA-A24 restricted T-cell
epitopes [31], were used and the predicted TAP binders
were compared with the HLA binding peptides.

Normalization of prediction scores
Brusic et al. [15] showed that ANN models were skewed
with a tendency to center-shift prediction of both very low

Table 1: Number of peptides in the training dataset

Binding Affinity Number of peptides

0 26
1 52
2 48
3 48
4 53
5 55
6 40
7 87
8 61
9 16
10 7

Sum 493
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and very high TAP binders. To obtain prediction scores
evenly distributed in the range 0–10, we have imple-
mented prediction score normalization. The raw predic-
tion scores produced by HMM methods are not within the
range 0–10. Score mapping is also necessary to bring final
prediction scores within the range 0–10. The mapping of
scores was done according to equation:

scoren = (score - scoremin) / (scoremax - scoremin)   × 10

scoren denotes the normalized score, score denotes the raw
prediction score, scoremin and scoremax denote the mini-
mum and maximum values of the raw scores. The values
for scoremin and scoremax were obtained using extensive sim-
ulation. More than 5000 randomly selected nonamer pep-
tides were used for prediction using the ANN/HMM
models. Since the testing data contains large number of
nonamer peptides, the highest and lowest predicted score
from the testing data were taken as reasonable maximum
and minimum scores for normalization.

Implementation
The web interface of PREDTAP uses a set of Graphical User
Interface forms. The interface was built using a combina-
tion of Perl, CGI and C programs. PREDTAP has been
implemented in the SunOS 5.9 UNIX environment.

Model validation
Assessment of predictive accuracy was carried out for three
subsets of peptide binders: 1) all binders including low,
moderate and high binders were considered as positive
samples, and all non-binders as negative samples
(referred to as the LMH set); 2) moderate and high bind-
ers were considered as positive samples, all non-binder
and low binders as negative samples (referred to as the
MH set), and 3) only high binders were considered as pos-

itive samples, with all other peptides as negative samples
(referred to as the H set). The Aroc values of ANN and
HMM models are shown in Table 2. All models showed
very good predictive performance. For MH set and H set,
ANN models showed excellent performance with Aroc
values above 0.9. For LMH set, the Aroc values of ANN
models are above 0.85. ANN with structure 180-2-1
showed slightly better performance than that of ANN with
structure 180-1-1. Thus ANN with structure 180-2-1 was
adopted in our system. The performance of HMM model
is also good with Aroc values above 0.85.

The specificity vs. sensitivity plot of the ANN prediction
model for prediction can be viewed at supplementary
materials A [1]. The specificity/sensitivity plot of the
HMM prediction model can be viewed at supplementary
materials B [1].

Sensitivities and specificities of ANN and HMM models at
various thresholds (based on normalized scores) in 10-
fold cross-validation experiments are shown in Figures 1
and 2. We selected the normalized score of 6.0 as a reason-
able selection threshold, with peptides with scores ≥ 6.0
predicted as TAP binders. In Table 3, the sensitivities and
specificities of ANN and HMM models at the selection
threshold 6.0 are shown. ANN model managed to cor-
rectly predict 88% of high binders at the cost of 11% of
false positives (the 11% also includes moderate and low-
affinity binders); 67% moderate and high binders with
3% false positives in the MH set, and 50% of all binders
(low, moderate and high) with practically no false posi-
tives (Table 3A). The specificities of ANN model for all
three sets (LMH, MH and H sets) are high (1.00, 0.97,
0.89 respectively), which indicates that 6.0 is a stringent
selection threshold and the false positive rate is very low
at this threshold. At threshold 6.0, HMM model managed

Table 2: Performance assessment of ANN/HMM models using 10-fold cross-validation

ANN 180-2-1 H MH LMH

1st run 0.95 0.95 0.89
2nd run 0.95 0.94 0.88
3rd run 0.95 0.94 0.88

ANN 180-1-1 H MH LMH

1st run 0.93 0.94 0.87
2nd run 0.92 0.92 0.86
3rd run 0.93 0.94 0.88

HMM H M L

1st run 0.9 0.9 0.87
2nd run 0.89 0.9 0.87
3rd run 0.89 0.9 0.86
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Plot of sensitivity and specificity of ANN model against thresholds in 10-fold cross-validationFigure 1
Plot of sensitivity and specificity of ANN model against thresholds in 10-fold cross-validation. The ANN model for prediction 
of A) LMH set, B) MH set, and C) H set.
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Plot of sensitivity and specificity of HMM model against thresholds in 10-fold cross-validationFigure 2
Plot of sensitivity and specificity of HMM model against thresholds in 10-fold cross-validation. The HMM model for prediction 
of A) LMH set, B) MH set, and C) H set.
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to correctly predict 91% of high binders with 32% false
positives, 81% moderate and high binders with 19% false
positives, and 66% of all binders (low, moderate and
high) with 14% false positives (Table 3B). The specificity
of the HMM model for LMH set was 0.86, higher than that
of MH set which was 0.81. The specificity of the HMM
model for MH set is much higher than that of H set, which
was 0.68. It implies that HMM model was able to select
binders (low, moderate and high binders) with low false
positive rate, but it failed to categorize them into sub-
groups – low, moderate or high binders.

To evaluate the predictive power of the methods, the data-
set was partitioned into a training set containing two
thirds of the data points randomly selected and a testing
set containing the remaining one third of data points. The
tests were conducted three times for each ANN and HMM
methods. The Aroc values of ANN and HMM models are
shown in Table 4. Despite smaller training datasets being
used ANN models continued to show excellent perform-
ance with Aroc values above 0.9 for H and MH sets and
good performance with Aroc values above 0.85 for LMH
set. The performance of HMM model is also good with
Aroc values above 0.85. The performance of HMM
dropped slightly with Aroc values above 0.85 for H and
MH sets and above 0.80 for LMH set.

Comparison to other predictive systems
Since PREDTAP, TAPPred and SVMTAP were built using the
same set of   training data [12,15], independent data sets
must be used to test and   compare their prediction per-
formance. Rather, we compared the predictions on
human papillomavirus type 16 E6 and E7 and the amino
acid positions of top 5% predicted TAP binders were
shown in Tables 5 and 6. Half of the experimental HLA-
A3 binders overlapped predicted TAP-binders. As sug-
gested by previous studies [15,32] HLA-A3 binding pep-
tides have high affinity to TAP, in agreement with our
results. The SVMTAP, TAPPred (SVM), and PREDTAP (ANN
& HMM) predicted similar sets of TAP-binding peptides
while TAPPred (cascade SVM) predictions were different
(Table 5). A single HLA-A3 binder from E7 protein did not
overlap any of predicted TAP binders except for TAPPred
(cascade SVM) (Table 6). Again, the TAPPred (cascade
SVM) predicted completely different set of peptides as
compared to the other four predictors.

Three naturally processed peptides from tumor antigen
KM-HM-1, namely 196–204, 499–508, and 770–778, are
naturally processed by HLA-24 [31]. HLA-A24 binding
peptides have been reported as TAP efficient [15,32]. KM-
HN-1 protein is 833 amino acids long, and we used top
3% of the predictions (Table 7). Peptide 195–203, which
has 8 amino acids overlap to the KM-HN-1196-204, was
selected by SVMTAP, TAPPred (SVM) and PREDTAP (ANN

Table 3: Sensitivities and specificities of ANN and HMM models at the selection threshold 6.0

Threshold ANN SE SP

6.0 LMH 0.50 1.00
MH 0.67 0.97
H 0.88 0.89

Threshold HMM SE SP

6.0 LMH 0.66 .86
MH 0.81 0.81
H 0.91 0.68

Table 4: Performance assessment of ANN/HMM models when the dataset was partitioned into two parts with the training dataset 
containing two thirds of the data points randomly selected and the testing set containing the remaining one third of data points

ANN 180-2-1 H MH LMH

1st run 0.91 0.92 0.85
2nd run 0.96 0.95 0.90
3rd run 0.94 0.91 0.87

HMM H M L

1st run 0.88 0.88 0.86
2nd run 0.86 0.88 0.83
3rd run 0.91 0.9 0.82
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& HMM), but not by TAPPred (cascade SVM). Peptide
499–508, was selected by the four methods as a potential
16-mer, also as a 12-mer by PREDTAP (ANN), but not by
TAPPred (cascade SVM). It was shown that some peptides
are efficiently transported by TAP in their optimal size for
MHC class I binding, while some peptides are transported
as larger peptides that need further trimming in ER for
MHC class I binding [33]. It is likely that peptides 196–
204, 499–508, and 770–778, are transported to ER in the
longer form and then further trimmed for loading to the
HLA-A24 molecules.

Using PREDTAP

To perform predictions using PREDTAP, the user needs to
paste a protein sequence into the textbox and assign a
name to the sequence. The sequence must contain
between nine and 2000 amino acids. If the prediction is
run with input sequence containing symbols other than
20 amino acid codes (spaces and carriage returns are
allowed) or the total sequence length is outside 9–2000
amino acids range, an error message will be displayed and
predictions will not be produced. The input can either be
a contiguous protein sequence (an amino acid sequence,
or FASTA format) or a list of peptides, one per line. The
default selection on the webpage is "Protein sequence"
(Figure 3A), which means the input sequence is treated as
a contiguous protein sequence (carriage returns and line
breaks will be ignored). The PREDTAP input processing
program decomposes protein sequence (or the list of pep-

tides) into a series of 9-mer peptides overlapping by eight
amino acids. Individual 9-mer peptides are then submit-
ted for prediction. Predicted binding scores for all 9-mers
are displayed in the result tables (Figure 3B). The 9-mer
binding scores are within the range 0–10, the higher the
score the higher the probability of peptide being binder.
PREDTAP has an option for plotting the binding scores of
all the overlapping 9-mer peptides as a graph, in which X
axis represents the start position of a 9-mer peptide and Y
axis represents the binding score of the 9-mer peptide. The
user can sort the peptides by their binding scores and
choose to view only predicted binders with binding scores
above a certain threshold (Figure 3C).

When users select the input sequence type to be "a list of
peptide sequences", the input sequences separated by car-
riage returns or line breaks are treated as different peptides
(Figure 4A). All overlapping 9-mers in each peptide are
submitted for prediction. In the result tables, predicted
binding scores are represented by the highest individual 9-
mer binding score within the input peptide. The 9-mer
with the highest binding score in each peptide is displayed
as "Binding Core" in the result table. The user can sort the
peptides by their binding scores (Figure 4B).

Discussion
We have earlier compared four prediction servers for pre-
diction of H-2Kd binding peptides [34]. A 121-amino acid
long sequence of the nuclear export protein NS2 from

Table 5: Amino acid position of top 5% predicted TAP binders in Human papillomavirus type 16 E6 (P03126) by SVMTAP, TAPPred 
and PREDTAP. The positions marked by "+" were selected by four prediction models. The positions marked by "*"were selected by 
three prediction models. The experimentally identified HLA-A*0301 binders are 17–15, 233–41, 342–50, 459–67, 575–83, 689–97, 793–
101, and 8125–133). The predictions in the table marked by 1–8 are within 16-mers containing respective HLA-A*0301 binders

SVMTAP TAPPred (SVM) TAPPred (Cascade SVM) PREDTAP (ANN) PREDTAP (HMM)

755,+ 534,+ 51 755,+ 755,+

1318 68 604 534,+ 463,*

534,+ 805 493 463,* 614

150 815 1328 68 473

1308 755,+ 937 83 71

463,* 1318 116 594 534,+

134 134 67 423 493

146 51 402,3 1308 836

Table 6: Amino acid position of the top 5% predicted TAP binders in HPV 16 E7 (P03129) by SVMTAP, TAPPred and PREDTAP. The 
positions marked by "+" were selected by four prediction models and those marked by "*"were selected by three prediction models. 
The experimentally identified HLA-A*0201 binder is 89–97. 1Within a 16-mer containing E7 89–97

SVMTAP TAPPred (SVM) TAPPred (Cascade SVM) PREDTAP (ANN) PREDTAP (HMM)

49+ 49+ 58 50* 49+

9* 50* 57 9* 44
50* 17 881 49+ 43
59 9* 821 48 71
7 59 67 76 3
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influenza A virus (GenPept accession NP_859033) was
searched for 9-mer candidate binders to a mouse MHC
molecule H-2Kd using four internet-accessible systems.
Only three peptides were predicted within the top ten can-
didates as binders by all four methods. The performance
comparison of PREDTAP with SVMTAP and TAPPred
(SVM) shows that consensus peptides can be selected by
combining predictions. The examples suggested that indi-
vidual predictions need to be taken with care and predic-
tions may be improved by a consensus of multiple
methods. A similar situation may be applicable to TAP
predictions. Hence the combination of ANN and HMM
predictions in PREDTAP should result in higher specificity
(fewer false positives) at the cost of slightly lower sensitiv-
ity. The predictions by TAPPred (cascade SVM) appear to
be of a limited value.

The combinatorial properties of molecular mechanisms
involved in antigen processing and adaptive learning
nature of the immune responses limit our ability to fully
predict immune responses. Combining experimental and
computational techniques improves our ability to deci-

pher complex interactions of the immune system. Com-
puter models are used to complement laboratory
experiments and thereby speed up knowledge discovery in
immunology. In particular, the number of large-scale lab-
oratory experiments for T-cell epitope mapping can be
minimised by the judicious use of experiments aimed at
developing and validating computer models. These mod-
els can then be used to perform large-scale computer sim-
ulations rapidly and inexpensively. The hypotheses
generated from these experiments can then be retested in
the laboratory to confirm their applicability to real-life
immunology. Further work will include both the refine-
ment of computational models and scanning disease-
related antigens for peptide sequences that show high
probability of processing and presentation. Those pep-
tides that are most likely to be produced by proteasomal
cleavage, transported by TAP, and bound by HLA class I
molecules are likely to be promising candidates for pep-
tide-based CTL vaccines. The PREDTAP server provides for
the prediction of peptide binding by TAP and can be used
as a comparison method against other TAP-prediction
servers.

Table 7: Amino acid position of top 3% predicted TAP binders in the tumor antigen KM-HN-1 (NP_689988.1) by SVMTAP, TAPPred 
and PREDTAP. The positions marked by "+" were selected by four prediction models and those marked by "*"were selected by three 
prediction models. The predicted TAP-binders in proximity of known T-cell epitopes are designated by 1(196–204), 2(499–508) and 
3(770–778)

SVMTAP TAPPred (SVM) TAPPred (Cascade 
SVM)

PREDTAP (ANN) PREDTAP (HMM)

Position Position Position Position Score Position Score

660+ 372+ 674 1951,+ 8.15 682 7.01
372+ 1951,+ 314 654* 8.09 5062,+ 6.98
426* 426* 639 372+ 8.06 372+ 6.87
1951,+ 794 249 422 7.94 683 6.83
794 330 530 565 7.41 507+ 6.65
199 317+ 525 317+ 6.53 1951,+ 6.62
654* 660+ 325 310 5.97 492 6.44
317+ 331 206 378 5.59 310 6.41
371 652* 12 468 5.54 660+ 6.41
110 199 479 7633 5.48 16 6.37
760 198 537 337 5.36 468 6.33
198 371 112 426* 5.33 317+ 6.19
789 654* 93 737 5.16 395* 6.16
705 5062,+ 626 246 5.04 573 6.12
457 789 470 660+ 4.98 223 6.12
507+ 457 141 756 4.96 193 6.09
48 730 483 110 4.95 730 6.09
573 304 71 5062,+ 4.89 313 6.05
376 565 99 201 4.79 647 6.05
652* 395* 668 507+ 4.76 510 6.01
395* 760 781 365 4.64 652* 6.01
780 318 57 653 4.55 15 6.01
455 7643 579 5022 4.52 814 6.01

5062,+ 63 124 492 4.44 676 5.94
324 507+ 590 456 4.43 782 5.94
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The examples of the output pages of PREDTAP for a single proteinFigure 3
The examples of the output pages of PREDTAP for a single protein. The sequence type chosen is "protein sequence". A) The 
input page. B) The main result page. The input sequence is decomposed into overlapping 9-mers for prediction of binding 
scores to TAP. C) Alignment view of the predicted TAP binding regions in the input protein.

A)

C)

B)
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An example of the output pages of PREDTAP for a list of peptidesFigure 4
An example of the output pages of PREDTAP for a list of peptides. A) The input page. B) The main result page. All 9-mers in 
each peptide were submitted for prediction. The predicted binding scores are represented by the highest individual 9-mer 
binding score of each input peptide. The 9-mer with the highest binding score in each peptide is displayed as "Binding Core" in 
the result table.

A)

B)
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