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Abstract

Background: Clonal expansion of B lymphocytes coupled with somatic mutation and antigen selection allow the
mammalian humoral immune system to generate highly specific immunoglobulins (IG) or antibodies against
invading bacteria, viruses and toxins. The availability of high-throughput DNA sequencing methods is providing
new avenues for studying this clonal expansion and identifying the factors guiding the generation of antibodies.
The identification of groups of rearranged immunoglobulin gene sequences descended from the same
rearrangement (clonally-related sets) in very large sets of sequences is facilitated by the availability of
immunoglobulin gene sequence alignment and partitioning software that can accurately predict component
germline gene, but has required painstaking visual inspection and analysis of sequences.

Results: We have developed and implemented an algorithm for identifying sets of clonally-related sequences in
large human immunoglobulin heavy chain gene variable region sequence sets. The program processes sequences
that have been partitioned using iHMMune-align, and uses pairwise comparisons of CDR3 sequences and similarity
in IGHV and IGHJ germline gene assignments to construct a distance matrix. Agglomerative hierarchical clustering
is then used to identify likely groups of clonally-related sequences. The program is available for download from
http://www.cse.unsw.edu.au/~ihmmune/ClonalRelate/ClonalRelate.zip.

Conclusions: The method was evaluated on several benchmark datasets and provided a more accurate and
considerably faster identification of clonally-related immunoglobulin gene sequences than visual inspection by
domain experts.

Background
The human immune system has the ability to produce
millions of different types of antibodies in the defence
against bacteria, virus and toxins. Immunoglobulin
heavy and light chain gene rearrangement happens dur-
ing the early differentiation of the B cell precursors. The
rearranged immunoglobulin heavy (IGH) chain is
formed by recombination of genes selected from three
sets of germline genes: variable (immunoglobulin heavy
chain variable, IGHV), diversity (IGHD) and joining
(IGHJ) [1]. Additional diversity is introduced by N

nucleotide addition (the process of adding non-germ-
line-encoded nucleotides at the time of gene rearrange-
ment) and, during clonal selection, by the introduction
of point mutations through the process of somatic
hypermutation. The accumulation of mutations during
clonal expansion improves antigen binding affinity and
results in the formation of clonally-related immunoglo-
bulin gene sets, each derived from a single germline
rearrangement.
The development of ultra-deep DNA sequencing tech-

nologies is opening a powerful new avenue of investiga-
tion into the B cell-mediated immune response, by
enabling the characterisation of antibody diversity in
individuals [2].The identification of sets of clonally-
related sequences is a significant component of this
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analysis as it allows determining the shape of the clonal
expansion in response to antigen exposure and other
conditions [3]. This information may have a critical
bearing on the clinical significance imputed to clonal B
cells in the blood, in terms of their ability to persist and
potentially mediate relapse of disease, or in auto-
immune diseases [4,5].
Previous studies have demonstrated the importance

and potential of accurate alignment and analysis for
studying the immune response, using software such as
IMGT/V-QUEST [6] , SoDA [7], iHMMune-align [8],
Ab-origin [9], etc. However, none of these programs
allow the direct identification of clonally-related immu-
noglobulin gene sets.
The third complementarity determining region

(CDR3) is a highly variable region in V domain. This
region encodes a protein loop that lies at the centre of
the antigen binding site [10,11], and its length and com-
position influence antigen binding [12]. The CDR3 of an
IGH variable domain (VH) spans the VH- DH- JH joint,
with interposed N region addition, and is the most vari-
able region of the heavy chain genes. As such it has the
greatest potential for the identification of clonal rela-
tionships between sequences. Previous studies [13,14]
have demonstrated that antigen receptor gene arrange-
ment and B cell diversification can be analyzed by mod-
elling the length distribution of CDR3 in IGH genes.
Here we demonstrate a new method for identifying

clonally related sequences in large sets of rearranged
IGH sequences, based on analysis of the highly variable
CDR3 region of the VH domain. Sequences are parti-
tioned using iHMMune-align [8] then clustered based
on CDR3 similarity and common V and J genes. Clus-
ters meeting an empirical quality criterion are then
identified and extracted as sets of potentially clonally
related sequences. This method is particularly well sui-
ted to the automated extraction of clonally related
sequences sets from high throughput sequencing data.

Results
A hierarchical agglomerative clustering method was
implemented to group IG gene sequences on the basis
of CDR3 sequence similarity and IGHV and IGHJ usage,
with clusters below an empirically selected threshold
classified as clonally related. The resulting software pro-
gram can be downloaded from http://www.cse.unsw.edu.
au/~ihmmune/ClonalRelate/ClonalRelate.zip. It accepts
as input a set of sequences partitioned by iHMMune-
align (as a semi-colon separated text file) and outputs a
comma-separated text file listing the sequences and
their clonal set assignment, together with dendrograms
showing the structure of the clonal sets, in XML format.
Several methods were tested for calculating a pairwise
distance reflecting clonal relationships that was suitable

for clustering. The resulting algorithms were evaluated
using a benchmark sequence set containing known clon-
ally-related sequence sets. The best performing version
of the algorithm provided a more accurate identification
of clonal sets than review by a domain expert.

Benchmark sequence set
In order to evaluate the suitability of clustering for iden-
tifying clonally-related sequence sets in large sets of IG
genes, a human IGH sequence dataset known to contain
multiple clonally-related sets obtained by Sanger
sequencing (PNG dataset, Genbank HM773966-
HM775073)(Wang et al., unpublished results) was
selected as a benchmark set to evaluate methods for
clonally-related set identification. The dataset was scru-
tinised by a domain expert and sequences recognised as
containing sequencing errors were removed. The result-
ing benchmark dataset contained 1116 human IGH
sequences. Sequences were partitioned using the hidden
Markov model based immunoglobulin gene sequence
partitioning tool, iHMMune-align. Partitioning results
were then examined, and clonally related sequence sets
were identified by an iterative process of visual inspec-
tion by domain experts and automated clustering using
the methods developed in this study. The final bench-
mark data set contained 182 sequences grouped into 66
clusters of clonally related sequences (Table 1).
Two additional sets of clonally related sequence,

PW99 and PW57, derived from tonsillar IgD class-
switched B cells, have been previously described [15].
These sets contained 57 and 99 unique sequences
respectively with each set, known to be derived from the
same V-D-J rearrangements. These two sets were used
to calculate the threshold used to label clusters as clon-
ally related.

Distance measure selection
The major difference between hierarchical clustering
algorithms is the measure of similarity between each
pair of clusters and the underlying modelling of the
clusters. We experimentally evaluated the performance
of different distance measures to generate a hierarchical

Table 1 PNG benchmark dataset

Number of Clusters Numbers of Sequences in a Cluster

1 16

1 7

1 6

2 5

3 4

16 3

42 2
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representation of the clonal relatedness of a set of
sequences.
Measuring the similarity of DNA sequences can be

considered as a problem of comparing two strings. The
Edit distance also known as the Levenshtein distance
[16], can be considered as a classic measure of the simi-
larity of two strings. However the un-normalised
Levenshtein distance (LD) can yield biased results when
comparing sequences of different lengths. The post-nor-
malized edit distance (PNED) attenuates this effect, but
it tends to yield smaller values for comparisons between
similar-length strings. The normalized edit distance
(NED) was tested in other fields (for example pattern
recognition) and can be considered as a similarity mea-
sure that is really independent of the length of the com-
parison [17-19].
Distance matrices were generated by pairwise compar-

ison of CDR3s from sequences in the PNG benchmark
dataset using un-normalised, post-normalised and nor-
malised Levenshtein distances. The benchmark dataset
sequences were then clustered based on these distance
matrices and the resulting clusters were compared to
the benchmark “expert” clustering. Comparisons were
performed using a range of gap penalties (0 to 8) and
the best results were obtained in all cases with a fixed
gap penalty of 3 per gap (independent of gap length).
This value was subsequently adopted for all other tests.
Table 2 demonstrates that the Normalized Edit Distance
provided a better clustering of clonally related sequence
sets than the other two distance measures.

Incorporating germline gene identity into the distance
metric
The CDR3 is the most variable region of the immuno-
globulin V domain, and was therefore selected as the
main criterion for clonal relatedness. However clonally
related sequences share the same component germline
genes and therefore including this information into the

comparison should improve its accuracy. IGHD germ-
line gene identity was not used as a criterion as this
gene is difficult to identify accurately [20] and it is com-
pletely contained within the CDR3. For IGHV and
IGHJ, germline gene assignments obtained from iHM-
Mune-align were compared for each pair of sequences.
Penalties for mismatches at the level of the allele, gene
and subgroup were used to modify the CDR3 edit dis-
tance as detailed in Methods. Several combinations of
penalties were trialled and the best performing scoring
scheme (5 for mismatching family, 3 for mismatching
gene, 1 for mismatching allele) was selected. The result-
ing distance metric (NED_VJ) improved the accuracy of
clonally-related set identification in the benchmark set
relative to the unmodified distance (NED) (Table 2).

Distance threshold estimation
An agglomerative hierarchical clustering algorithm was
used to group sequences on the basis of their pairwise
distance and to construct a dendrogram. An average
linkage scheme [21] was implemented to calculate the
mean distance between each elements of each cluster.
In order to estimate the threshold distance below

which a cluster corresponds to a clonally related
sequence set, an evaluation graph showing the cumula-
tive merging of sequences into clusters as the threshold
distance between leaves is increased was plotted. This
graph was constructed for the PNG, PW99 and PW57
datasets, using NED_VJ as similarity measure. Figure 1
shows this graph (derived from the whole dataset) juxta-
posed with a sample dendrogram (consisting of 90 ran-
dom selected sequences from PNG dataset) to clarify
the merging process used in the evaluation graph. The
PNG graph shows that after an initial rapid merging of
clonally-related sequences into clusters, the plot flattens
out as there are fewer similar sequences to merge into
clusters. Once the merging distance increases to a level
where the program starts clustering clonally-unrelated

Table 2 Comparison of distance measures for clustering immunoglobulin gene variable sequences

Clustering
method

Number of clusters
below the threshold

Number of sequences in
clusters below threshold

Number of clusters
different from benchmark
set

Number of incorrectly
assigned sequences

Correctly
clustered
sequences (%)

(a) Expert
inspection

67 184 4 16 95.1

(b) LD 117 364 71 182 50.0

(c) PNED 93 258 36 76 70.5

(d) NED 78 211 15 29 85.9

(e) NED_VJ 70 190 4 8 95.8

Sequences in the benchmark PNG dataset were clustered using the following 4 methods (a) Expert inspection carried out by visual inspection of the partitioned
gene segments without automated clustering. (b) LD: automated clustering based on pairwise Levenshtein Distance between CDR3 sequences. (c) PNED:
automated clustering based on post-normalized edit distance. The Levenshtein Distances of each sequence pair is normalize by square root of the length of
longer sequence in comparison. (d) NED: automated clustering based on the Normalized Edit Distance. (e) NED_VJ: automated clustering based on the
Normalized Edit Distance, incorporating germline gene identity. Gap penalties of 3 were applied to each automated method. The resulting clusterings were
evaluated relative to the “benchmark” clustering obtained by combination of automated clustering and visual inspection.
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sequences the slope of the curve increases sharply. A
cutoff distance of 0.32 (red line) allows good discrimina-
tion between clonally-related and unrelated sequences in
the PNG set as well as correct clustering of all the
sequences in the PW99 and PW57 sets.

Algorithm performance
The performance of the algorithm can be evaluated by
evaluating the performance of the edit distance calcula-
tion algorithm and that of the agglomerative hierarchical
clustering algorithm.
Given two gene sequences X and Y of lengths m and

n, and n ≤ m. Let LD(X, Y) be the Levenshtein Distance
between X and Y, and NED(X,Y) be the normalized edit
distance between X and Y. Using dynamic program-
ming, the computation of LD(X,Y) can be finished in O
(mn) time and memory space The actual space require-
ments can be reduced to O(n) in implementation [17].
However, calculation of NED requires higher time and
space complexity. According to Marzal and Vidal [17]
NED requires computing NED(X,Y) in O(m · n2) time
and an array of (m+1) · (n+1) · (m+n) memory locations.

The time and space complexities of calculating a dis-
tance matrix within a gene sequence dataset greatly
depends on the size of the dataset S. Time and space
complexity will increase by S2.
Agglomerative hierarchical clustering using average-

link clustering merges in each iteration the pair of clus-
ters with the highest cohesion. This algorithm does not
scale well: the time complexity is at least O(n2), where n
is the number of total objects.
However CDR3 sequences are short sequences with

lengths usually no more than 80 nucleotides. Therefore
the computation of NED for each pair of sequences can
be managed in a reasonably short time. The main lim-
itation in the performance of the program is due to the
large number of sequences being analysed. In our
experiments with high-throughput data obtained by 454
sequencing [22], the largest datasets always comprised
less than 5000 non-redundant sequences per individual.
We have tested the performance of our program on the
PNG dataset (1116 sequences) and on a dataset contain-
ing 4152 sequences, using a personal laptop computer
with fairly standard specifications (Intel Core 2 Duo
2.53GHz, with 4GB RAM, Ubuntu Linux 8.04). The pro-
gram was analysed the PNG dataset in 85.4 seconds and
the large dataset in 1773 seconds (29.55 minutes). This
level of performance is acceptable when considering the
time required for generating and partitioning the
sequence sets.

Discussion
B cell diversification is an integral part of the normal
immune response and includes processes of somatic
hypermutation (SHM) and isotype class switching within
the germinal centres of the lymph nodes [20]. Under-
standing the origin and clonal evolution of B cells is cri-
tical to the overall understanding of the immune
response in disease. A number of studies [3-5] have
demonstrated the usefulness of analysing clonally-related
immunoglobulin gene sequence sets in this context.
We designed a tool for identifying clonally related sets

as a component in a pipeline for processing high-
throughput rearranged immunoglobulin gene sequence
data. This tool requires as input a set of sequences par-
titioned into their likely component germline gene
using iHMMune-align, and labels these sequences with
information about their likely clonally-related sequence
cluster membership. iHMMune-align is used to obtain
the identity of the IGHV and IGHJ genes and was
selected as it is a component of our analysis pipeline
and the only currently available utility suitable for scrip-
table high-throughput analysis. However there is no rea-
son why the clustering program cannot be modified to
make use of other partitioning programs such as

Figure 1 Maximum distance (NED_VJ) within a cluster versus
number of clusters processed for the PNG, PW99 and PW57
datasets. The red line corresponds to the distance threshold below
which sequences are considered to be clonally-related.
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IMGT/V-QUEST or SoDA if these are available in high-
throughput versions.
Standard phylogeny inference methods are not suita-

ble for exploring clonal relationships within an immuno-
globulin gene sequence dataset as antibodies diversify
through processes that differ substantially from those of
long time scale evolutionary events. However, string
comparison methods that are widely used in sequence
analysis are still applicable: sequence insertions, dele-
tions and substitutions can be thought of as editing
operations that transform one string into another. Pair-
wise distances between sequences can be calculated
from string edit distances. Clonally related sequences
are similar in length and have many common mutations,
and this is reflected in their pairwise edit distances. A
dendrogram representing the hierarchical structure of
the relationship between sequences can then be
constructed.
The major differences between different hierarchical

clustering algorithms are the measure of similarity
between each pair of clusters and the underlying model-
ling of the clusters. Distance measures which can accu-
rately represent relationships between sequences result
in improved accuracy in the identification of clonally
related sets. The Levenshtein distance is the most com-
monly used metric for measuring the dissimilarity
between strings. However, it is not very suitable for
strings of different lengths since it lacks normalization
for appropriately weighting edit operations relative to
the length of the strings being compared. It should be
clear that one difference between two short strings is
more critical than one difference between two longer
strings.
There are two well-known approaches for normalizing

the Levenshtein distance: one based on the editing path
lengths (normalized edit distance, NED), and the other
on the string lengths (post normalized edit distance,
PNED). Post normalized edit distance (PNED) nor-
malizes the editing transformation by the length of one
of the strings, while NED normalizes the editing trans-
formation by the alignment path length. Marzal and
Vidal [17] demonstrated the improved accuracy of NED
relative to PNED when comparing string patterns. Our
results also demonstrated that NED resulted in
improved accuracy when clustering clonally-related
immunoglobulin gene sequences relative to PNED and
to the un-normalized Levenshtein distance.
The clustering accuracy was further improved by

incorporating information about common usage of V
and J genes between sequences, in addition to the CDR3
similarity. However CDR3 similarity remains the main
criterion, as it is less sensitive to potential errors in
germline gene identification. The resulting NED_VJ dis-
tance produced a clustering of clonally-related

sequences in the benchmark set that, when examined by
domain experts, was found to improve on their initial
classification by visual inspection of the iHMMune-align
outputs. This demonstrates the value of our approach
not only in automating the painstaking task of identify-
ing clonally-related sequence sets by visual inspection
but also in improving the accuracy of that identification.
Various combinations of values for the gap, V mis-

match and J mismatch penalty parameters were tested
using the PNG dataset in order to select the best per-
forming values. The PNG dataset covers a wide range of
germline gene usage and mutation level and is very
likely to be representative of most heavy chain gene
sets. The resulting values are therefore likely to be suita-
ble for all immunoglobulin heavy chain gene sets. How-
ever the user has the option of modifying these values if
deemed necessary.
One issue with clonally-related sequence identification

is the presence of sets of sequences which appear clon-
ally-related but are only similar as a result of chance
matching. This is particularly an issue with sequences
containing very short IGHD genes where CDR3 similar-
ity can more readily occur by chance and is less likely
to reflect a common clonal origin. This issue was
addressed by selecting a conservative distance threshold
below which a cluster is considered to be a clonally-
related sequence set, although this may decrease the
sensitivity of our method. Some improvements may be
obtained by taking into account IGHD gene identity and
number of shared mutations, when these can be deter-
mined with confidence [20].
Another source of error in the classification of the

benchmark dataset was the presence of chimeric
sequences in the dataset. These chimeric sequences are
formed from recombination of two sequences and may
have identical CDR3 sequences, but different V genes.
Our method relies primarily on CDR3 differences for
identifying clonally related sets, and therefore cannot
avoid erroneous clustering of chimeric sequences. This
problem was minimised by inclusion of IGHV identity
in distance calculations.

Conclusions
The identification of clonally related immunoglobulin
gene sequences is usually performed by visual inspection
of N1, IGHD and N2 regions from sequences previously
identified as having the same IGHV and IGHJ regions,
This visual inspection method is unsuitable for analysing
high throughput sequencing data obtained using newly
developed DNA sequencing technologies. To our knowl-
edge, the hierarchical clustering based method presented
here is the first automated method for clonally related
immunoglobulin heavy chain gene identification. It iden-
tified clonally-related sequences with more accuracy
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than visual inspection alone, and successfully identified
the known PW57 and PW99 clonally related sets when
they were mixed into a much larger set of immunoglo-
bulin gene sequences.
Our current method uses the most highly variable

region in immunoglobulin gene, CDR3, as a key indicator
of clonal relatedness and supplements it with information
about shared V and J gene usage. Best results in terms of
both speed and accuracy were obtained when pre-
inspecting the input datasets to filter out sequencing
errors and especially chimeric sequences. However, in
the absence of an automated method for detecting such
error sequences, our method can still be applied to unfil-
tered data sets as visual detection of chimeric sequences
is easier on a dataset that has been processed to identify
clonally-related sequences. In such a dataset, chimeric
sequences typically show a pattern of IGHV mutations
that differ significantly from the other sequences in their
cluster and therefore stand out in the results.
Clustering-based identification of clonal relatedness in

immunoglobulin heavy chain genes improves our ability
to study the clonal expansion in B cells, and provides a
new tool for understanding the immune response in a
large number of clinically important conditions includ-
ing autoimmune diseases, infectious diseases and cancer

Methods
Immunoglobulin sequences sets
The PNG immunoglobulin sequence set was sampled
from blood from a cohort of Papua New Guinea indivi-
duals. Sequences were visually inspected to filter out
sequencing errors before running the test. The two
other benchmark sets of clonally related sequences,
PW99 and PW57, were derived from tonsillar IgD class-
switched B cells [15], and consist of 57 and 99 unique
sequences known to be derived from the same V-D-J
rearrangements.

Construction of CDR3 starting and ending length libraries
The human germline IGHV and IGHJ repertoires were
the same repertoires used by the current version of
iHMMune-align. They include sequences obtained from
IMGT [22,23,25] modified on the basis of a recent re-
evaluation of the germline IGHV repertoire [22,26].
The CDR3 was defined as per the IMGT unique num-

bering [27], from position 105 to position 117 (codon or
amino acid). This corresponds to the DNA regions
between the IGHV region 2nd-CYS 104and the IGHJ
region J-TRP 118.
The IGHV germline repertoire was processed through

IMGT/V-QUEST [6] to calculate, for each IGHV germline
gene in the repertoire, the distance between the CDR3
start nucleotide and the end of the IGHV germline gene,
which was stored in a CDR3 starting length library.

The CDR3 ending length library storing the distances
between the start of each IGHJ germline gene and the
end of CDR3 (defined as the first TGG (Trp) codon)
was constructed in the same way.

Partitioning of immunoglobulin sequences
Rearranged V-D-J sequences were aligned to the
reported germline repertoire using the iHMMune-align
program, an alignment tool based on a hidden Markov
model of the rearranged variable domain [8]. Sequences
were partitioned into V, N1, D, N2 and J segments, and
V/D/J segments were assigned to the most appropriate
germline gene/allele.

Extraction of immunoglobulin CDR3 sequences
For each iHMMune-align-partitioned sequence, the CDR3
was extracted by concatenating the end of the IGHV
region (as defined by the CDR3 starting length library),
the N1, IGHD, N2 regions and the beginning of the IGHJ
region (as defined by the CDR3 ending length library).

Calculation and normalisation of edit distance between
CDR3 sequences
Levenshtein distance (LD), post-normalized edit distance
(PNED) and normalized edit distance (NED) were calcu-
lated from pairs of CDR3 sequences using the described
algorithms [16-18], implemented in a Java program.

Calculation of NED-VJ distance
In the iHMMune-align results, V regions are identified
by subgroup, gene and allele [28] (e.g. for IGHV1-2*01,
subgroup is IGHV1, gene is IGHV1-2 and allele is
IGHV1-2*01). IGHJ germline genes are not classified
into families and are therefore labelled only with gene
and allele numbers.
The NED_VJ distance was calculated as:

NED VJ
LD S S

L
v J_

( )
=

+ +

Where LD is the un-normalised Levenshtein distance,
SV is the mismatch penalty for IGHV germline gene (0
when the two sequences match the same IGHV gene, 1
when only the allele differs, 3 when the gene differs, and
5 for different subgroups), SJ is the mismatch penalty for
IGHJ gene (0 when the two sequences match the same
IGHJ germline gene, 1 when they differ only in allele
assignment and 3 when they match different genes). L is
the CDR3 alignment length (edit path length).

Hierarchical clustering
Agglomerative hierarchical clustering was performed
using the mean distance between elements of each clus-
ter (average linkage) to build a dendrogram for the
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sequence set. The algorithm was implemented in Java.
The resulting dendrogram was stored as an XML tree
file.

Extraction of clonally related sequence sets
The distance threshold defining a clonally-related
sequence cluster was determined by analysis of the over-
all agglomerative clustering pattern in the PNG dataset
and using two sets of sequences known to be clonally-
related (PW57 and PW99). Sub-clusters below this
threshold were extracted and stored into XML sub-tree
files. Clonally-related sequence sets were also output as
a comma-delimited text file for import into a spread-
sheet for further analysis.
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