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Abstract

Background: Selective peptide transport by the transporter associated with antigen processing (TAP) represents
one of the main candidate mechanisms that may regulate the presentation of antigenic peptides to HLA class I
molecules. Because TAP-binding preferences may significant impact T-cell epitope selection, there is great interest
in applying computational techniques to systematically discover these elements.

Results: We describe TAP Hunter, a web-based computational system for predicting TAP-binding peptides. A novel
encoding scheme, based on representations of TAP peptide fragments and composition effects, allows the
identification of variable-length TAP ligands using SVM as the prediction engine. The system was rigorously trained
and tested using 613 experimentally verified peptide sequences. The results showed that the system has good
predictive ability with area under the receiver operating characteristics curve (AROC) ≥0.88. In addition, TAP Hunter
is compared against several existing public available TAP predictors and has showed either superior or comparable
performance.

Conclusions: TAP Hunter provides a reliable platform for predicting variable length peptides binding onto the TAP
transporter. To facilitate the usage of TAP Hunter to the scientific community, a simple, flexible and user-friendly
web-server is developed and freely available at http://datam.i2r.a-star.edu.sg/taphunter/.

Background
The binding of peptides to human leukocyte antigen
(HLA) class I molecules is a prerequisite for CD8+ T
cell response. Majority of these peptides are generated
in the cytosol by proteosomal cleavage of endogenous
proteins [1]. The degraded peptides, preferably 9-18
amino acids in length, are transported into the lumen of
the endoplasmic reticulum (ER) by the transporter asso-
ciated with antigen processing (TAP) for loading on
HLA class I molecules [2,3]. The ligated HLA class I
complexes then leave the ER and are transported to the
cell surface for presentation to T cell receptors [4].

Defects in TAP genes can severely impair peptide trans-
port into the ER, and result in reduced surface expres-
sion of HLA class I molecules [5].
The substrate specificity of TAP has been examined in

several studies. It is now known that hydrophobic aro-
matic residues are preferred at the C-terminus, positions
(p) 3, and p7; hydrophobic or positively charged residues
are preferred at p2; aromatic or acidic residues are pre-
ferred at p1; and proline is disfavored at p1 and p2
[5-7]. Different HLA class I alleles exhibit different
TAP-dependencies. HLA-A2 is reportedly the least
TAP-dependent; B7 can bind to other mechanisms
besides TAP transport; while A3 is predominantly TAP
dependent [8]. As such, improved understanding of
TAP selectivity is important for elucidating its role in
regulating the supply of peptides to HLA class I
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molecules. This is also crucial for the design of T cell-
based vaccines for infectious diseases, autoimmune dis-
orders, transplantation and cancer.
To date, a variety of computational methods have

been developed to predict TAP-binding peptides. Daniel
and coworkers [9] applied artificial neural networks
(ANN) to simulate TAP binding experiments. Zhang et
al. [10] combined ANN and hidden Markov models to
predict peptide binding to human TAP. Doytchinova
and colleagues [11] developed an additive QSAR model
for peptides binding to TAP molecule. Bhasin and
Raghava [12] utilized a cascade support vector machines
(SVM)-based method to predict the binding affinities of
TAP ligands, while Peters et al. [13] and Diez-Rivero
et al. [14] reported the use of stabilized matrix method
and SVM-based system, respectively, to predict both
nonamer and variable length TAP ligands. Although
numerous studies have shown the importance of
sequence locality in TAP transport [12], none of the
existing systems have exploited localized amino acid
effect for predicting TAP binding affinity of peptides.
Here we report TAP Hunter, a web-based computa-

tional system for predicting TAP ligands using SVM as
the discrimination engine. A novel data encoding
scheme, based on sequence locality and composition
effects, allows the system to model essential features in
peptides that can bind to the TAP translocator. This
simple method allows us to predict TAP ligands with an
accuracy that is better than existing approaches based
on full-length sequences.

Methods
Data
The dataset consists of 896 peptide sequences. In this
list, to use the same dataset as those of the existing
work [12,13], we first focused on 276 TAP binding and
94 non-binding nonamer peptides, which were derived
from TAP binding assays [10]. We used them for 5-
fold cross validation (CV) to select the best model out
of the 48 models that we examined on different amino
acid positions (see Table 1 for selected models). We
then trained the optimized model using all 276 binders
and 94 non-binders once again, and its performance
was assessed using three independent datasets: i) 91
TAP binding and 32 non-binding nonamer peptides
derived from TAP binding assays [9]; and ii) 38
recently elucidated nonamer peptides from TAP
dependent HLA-A1, A3, A11, A24 and B27 [15], and
12 nonamer peptides from TAP-deficient LCL721.174
cell line [16].

Support vector machines
SVMs are a type of supervised statistical machine-learn-
ing techniques based on the structural risk minimization

principle used for classification and regression. In this
work, SVM is used to binary classify the peptides into
TAP- binding or TAP non-binding. Suppose S = {(x1,
y1) … (xi, yi)} is a set of i training samples, where x is
the feature vectors in d-dimensional domain (xi ∊ Rd)
representing an individual peptide and yi ∊ {1,-1}. For a
binary classification, the kernel function is utilized to
map the input feature vectors into a higher dimensional
feature space. Within this feature space, SVM modelling
will locate an optimal hyperplane separating the vectors
into two distinct categories. The decision function for
the classifier can be written as

f x sgn y K x xi i i

i

n

( ) [ ( , )]=
=
∑

1

ai is solved by quadratic programming subjected to 0≤
ai ≤C condition, where C is the parameter to control the
trade-off between the margin and training error. K repre-
sents the kernel function while sgn is the sign of the argu-
ment in the form of -1 or 1. If the function of a test
instance is greater than zero, it will be tagged as positive
case while a function value of less than zero is presented
as negative case. This concept of kernel function mapping
allows SVM to model very complex precincts and thus
enable SVMs to easily handle non-linear data. Though
there are many different type kernels proposed by
researchers, the commonly used and broadly relevance to
many applications are the linear, polynomial, radial basis
functions and sigmoid kernel functions.

Model building and evaluation
TAP Hunter was implemented using the SVM-Light
package [17]. The system employs the Radial Basis
Function (RBF) kernel for SVM training. We also
explored linear and polynomial kernel functions but
they did not achieve higher performance levels (data
not shown). The inputs to the SVM are binary strings
or feature vectors representing encoded representations
of physicochemical properties previously reported as
significant for TAP binding [12]. These include hydro-
phobicity, aromaticity, charges and residue weight. It
has been reported that the N- and C-terminal residues
of TAP ligands contribute to most of the binding inter-
actions [12]. Using the above features, truncation analy-
sis was performed to examine the contribution of each
and every peptide position to binding. 5-fold cross-vali-
dation (CV) was performed to assess the stability of the
derived models. Finally, the performance of each models
were assessed using sensitivity (SE), specificity (SP),
accuracy (ACC) and the area under the Receiver Oper-
ating Characteristic curve (AROC) as previously
described [18].
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Results
System performance
The robustness of TAP Hunter using different sequence
localities as inputs for training has been estimated for 5-
fold CV (Table 1). The best model was achieved using
descriptors derived from peptide positions N+1, N+2,
N+3 and C (model 10; ACC=0.84 and AROC=0.82 for
5-fold CV; ACC=0.88 and AROC= 0.88 for Testing
dataset i), consistent with existing studies that these
amino acid positions are crucial for binding [12].

Comparison with existing methods
We benchmarked the performance of TAP Hunter
against four existing techniques: TAPPred (SVM) [12],
TAPPred (Cascade SVM) [12], Stabilized matrix method
(SMM) [13] and TAPREG [14] using an independent

dataset of 50 recently elucidated nonamer peptides
(Testing dataset ii). Among them, only SMM and TAP-
REG have the capacity to predict arbitrary length
ligands. Each of these techniques has its own defined
threshold for discriminating TAP-binding ligands. For
objective evaluation of the systems’ performance, the
threshold independent AROC was adopted in this study.
And to illustrate the observed AROC difference between
TAP Hunter and each of the current methods is statisti-
cally significant; we used bootstrapping to randomly
sample the testing dataset to into smaller sizes for statis-
tical inference. As shown in Figure 1, the sequence
locality approach as implemented in TAP Hunter con-
sistently outperforms or is comparable to all existing
techniques evaluated in this study – TAP Hunter: mean
AROC=0.85 (± 0.018 95% CI); Stabilized matrix method

Table 1 Performance evaluation of SVM models using different peptide localities (selected outputs are shown)

No of a.a. Model No. a.a. positions used in modeling ACC AROC

5-fold CV Independent testing 5-fold CV Independent testing

1 2, 3 0.80 0.76 0.80 0.75

2 2 2, 9 0.76 0.77 0.80 0.83

3 3, 9 0.79 0.78 0.81 0.86

4 1, 2, 3 0.79 0.77 0.83 0.78

3 5 1, 2, 9 0.82 0.82 0.88 0.86

6 1, 3, 9 0.80 0.77 0.84 0.85

7 2, 3, 9 0.82 0.83 0.87 0.88

8 1, 2, 3, 7 0.79 0.73 0.84 0.76

9 1, 2, 3, 8 0.79 0.79 0.82 0.77

10 1, 2, 3, 9 0.84 0.82 0.88 0.88

11 1, 2, 7, 9 0.81 0.75 0.87 0.83

4 12 1, 2, 8, 9 0.80 0.78 0.86 0.86

13 1, 3, 7, 9 0.81 0.79 0.85 0.86

14 1, 3, 8, 9 0.82 0.81 0.83 0.86

15 2, 3, 7, 9 0.83 0.76 0.89 0.83

16 2, 3, 8, 9 0.78 0.82 0.85 0.88

17 1, 2, 3, 7, 8 0.79 0.76 0.84 0.74

18 1, 2, 3, 8, 9 0.81 0.82 0.86 0.89

5 19 1, 2, 7, 8, 9 0.82 0.76 0.87 0.83

20 1, 2, 3, 7, 9 0.82 0.77 0.88 0.86

21 1, 3, 7, 8, 9 0.80 0.80 0.85 0.83

22 2, 3, 7, 8, 9 0.82 0.79 0.86 0.86

23 1, 2, 3, 4, 5, 6 0.76 0.8 0.83 0.80

6 24 1, 2, 3, 7, 8, 9 0.82 0.79 0.85 0.86

25 4, 5, 6, 7, 8, 9 0.78 0.69 0.80 0.59

26 1, 2, 3, 4, 7, 8, 9 0.80 0.75 0.85 0.84

7 27 1, 2, 3, 5, 7, 8, 9 0.81 0.76 0.85 0.86

28 1, 2, 3, 6, 7, 8, 9 0.81 0.77 0.86 0.84

29 1, 2, 3, 5, 6, 7, 8, 9 0.81 0.82 0.86 0.85

8 30 1, 2, 3, 4, 6, 7, 8, 9 0.80 0.80 0.85 0.84

31 1, 2, 3, 4, 5, 7, 8, 9 0.78 0.79 0.83 0.85

9 32 1, 2, 3, 4, 5, 6, 7, 8, 9 0.79 0.78 0.84 0.83
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(SMM): mean AROC=0.86 (± 0.023 95% CI); TAPPred
(SVM): mean AROC=0.80 (± 0.023 95% CI); TAPPred
(Cascade SVM): mean AROC=0.28 (± 0.022 95% CI);
TAPREG: mean AROC=0.76 (± 0.029 95% CI). The com-
puted p-values on the observed AROC difference between
TAP Hunter and the respective methods are shown in
Table 2. The results indicate that, overall, TAP Hunter is
capable of screening peptides that could be transported by
TAP using local description of amino acid sequence.
There are also algorithms that integrate different sub-
components of the antigen processing and presentation
pathway such as proteasome, TAP, and HLA [19,20].
However, we did not benchmark these systems as only the
aggregate scores of prediction are provided.

Web-server implementation and description
The execution of the TAP Hunter web-server comprises
of two segments, the front and the back end. The front
end, written in HTML and JavaScript, consists of the
web-interface designed for user input sequence(s) as
well as the references and databases used for the collec-
tion of the training and evaluation datasets. The back
end administration is run by several modules (written in
Perl, JavaScript, HTML, CGI and Java) for (i) the input
sequence(s) error assessment, (ii) the cleavage of protein

sequence into the user defined peptide length, (iii) the
generation sequence feature vectors, the operation of
SVM-light package and (iv) output of results. TAP Hun-
ter has been rigorously tested on Internet Explorer (IE)
and Mozilla Firefox browsers and is expected to perform
on other major web browsers. Typically the processing
time required to perform TAP-peptide binding affinity
prediction operation for 566 nonamer peptides is less
than 30 seconds.
The operation of TAP Hunter is simple, flexible and

user-friendly (Figure 2). TAP Hunter allows prediction
for both short-length peptides and pathogen proteins to
be screened for TAP binding peptides. Users either
input sequence(s) in fasta format in the textbox or
upload text file containing the sequence(s) to perform
prediction. For short length peptide prediction, the max-
imum peptide length allowed is 21 amino acid residues
while for protein sequence type prediction is limited to
a maximum peptide length of 12 amino acid residues.

Discussion and conclusion
The complex molecular mechanism involved in antigen
processing and presentation pathway has impeded our
capability to predict the adaptive nature of immune
responses confidently. Discovery through experimental
evaluation is expensive and time-consuming. Yet, usage
of computational methods to complement laboratory
experiments is likely to expedite the knowledge discov-
ery in immunology. Particularly in recent years, we have
seen increased attempts to simulate the cell-mediated
immune system by integrating the proteasome, TAP,
and HLA components of the antigen processing and
presentation pathway [19-22]. A study by Doytchinova

Figure 1 Mean AROC curve evaluation for various TAP predictors.

Table 2 p-values for the observed AROC difference
between TAP Hunter and each of the existing TAP
predictors for nonamers ligands predictions

TAPPred
SVM

TAPPred
Cascade

SMM TAPREG

TAP
Hunter

8.2x10-4 2.2x10-16 Not
Significant

5.1x10-8
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and colleagues in 2004 has shown that TAP pre-
selection could reduce the number of non-binders from
10% (TAP-independent) to 33% (TAP-dependent). In
this aspect, TAP Hunter derives its feature vectors from
the N- and C- terminal positions of TAP ligands that
are known to exhibit binding motifs and most heavily
influence the TAP binding affinity [5-7]. Our investiga-
tion has shown that this innovative solution is equally
adept or even superior in discriminating nonamer TAP
binding peptides than all current nonamer TAP predic-
tors. Further refinement in the feature selection proce-
dure may enable the development of TAP Hunter into a
practical tool for pre-selecting T cell epitopes.
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