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Abstract

To properly characterize protective polyclonal antibody responses, it is necessary to examine epitope specificity.
Most antibody epitopes are conformational in nature and, thus, cannot be identified using synthetic linear pep-
tides. Cyclic peptides can function as mimetics of conformational epitopes (termed mimotopes), thereby providing
targets, which can be selected by immunoaffinity purification. However, the management of large collections of
random cyclic peptides is cumbersome. Filamentous bacteriophage provides a useful scaffold for the expression of
random peptides (termed phage display) facilitating both the production and manipulation of complex peptide
libraries. Immunoaffinity selection of phage displaying random cyclic peptides is an effective strategy for isolating
mimotopes with specificity for a given antiserum. Further epitope prediction based on mimotope sequence is not
trivial since mimotopes generally display only small homologies with the target protein. Large numbers of unique
mimotopes are required to provide sufficient sequence coverage to elucidate the target epitope. We have devel-
oped a method based on pattern recognition theory to deal with the complexity of large collections of conforma-
tional mimotopes. The analysis consists of two phases: 1) The learning phase where a large collection of epitope-
specific mimotopes is analyzed to identify epitope specific “signs” and 2) The identification phase where immunoaf-
finity-selected mimotopes are interrogated for the presence of the epitope specific “signs” and assigned to specific

antibody specificities within polyclonal antisera.

epitopes. We are currently using computational methods to define epitope “signs” without the need for prior
knowledge of specific mimotopes. This technology provides an important tool for characterizing the breadth of

Introduction

Antibodies play a central role in immune memory and
long-term protective responses. Serum antibodies for
specific pathogens are recognized as a primary read-out
for vaccination and recent studies have revealed that
pathogen-specific antibodies persist for decades follow-
ing vaccination [1]. It is important, however, to appreci-
ate that not all antibodies can prevent infection. As an
example, a collection of monoclonal antibodies have
been isolated against the West Nile virus envelope pro-
tein (E) which recognize distinct epitopes within the
protein. However, only antibodies that bind to specific
epitopes can produce virus neutralization and protective
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immunity in vivo [2]. It was shown also that although
many anti-HER2 antibodies inhibit the growth of cancer
cells, some of them have no effect on cell growth, while
others actively stimulate cancer growth. It has been pro-
posed that this wide spectrum of biological effects is
related to the epitope specificity of the Abs and to con-
sequent changes in receptor signalling [3][4]. Therefore,
to properly characterize a protective humoral response
and to use it for vaccine design, it is necessary to char-
acterize the epitope specificity, in addition to antibody
titers.

A typical strategy for monitoring specific antibodies to
known antigens involves the use of ELISAs coated with
recombinant protein(s) or the vaccine itself. When com-
bined with serologic analysis of recombinant cDNA
expression libraries (SEREX), ELISAs are a powerful tool
for monitoring humoral responses in various disease
states where the antigens may not be known a priori
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[5-7]. With regard to autoimmune antibodies, the avai-
lablity of whole transcriptome sequences and effective
protein expression systems has made it possible to
screen the complete human proteome. Protein arrays
can be used for monitoring responses to a broad range
of proteins. Such arrays have been produced using geno-
mic information [6,7] or using information available in
the SEREX database [8,9], which collects data for anti-
genic proteins identified using polyserum from cancer
patients. All of these methods are useful tools for mea-
suring the magnitude and breadth of the humoral
response, but they reveal little information regarding
epitope specificity. While it is technically feasible to
engineer recombinant proteins with specific mutations
designed to disrupt putative epitopes, due to the com-
plexity of protein folding, epitopes can be disrupted at
sites distal to the mutations that will complicate inter-
pretation of the results.

Epitope-specificity can be determined for linear epi-
topes by screening libraries of short synthetic peptides
that span the entire target antigen (PEPSCAN) [10,11].
However, the majority of antibody responses [12] are
directed at structural epitopes which are difficult to
recapitulate with synthetic peptides because they are
typically formed by protein folding and, thus, are com-
posed of amino acid residues which are often separated
by great distances within the linear protein sequence.
Immunoaffinity selection of random peptides offers an
alternate strategy to characterize antibody epitopes
because the affinity selection will identify peptides with
spatially-proximal residues that may be distant from
each other according to linear sequence. Indeed, this
strategy offers an unbiased method to screen for epitope
mimetics (mimotopes) [13] that can define antibody tar-
gets and serve directly as immunogens. To effectively
apply this strategy, it is necessary to isolate many ran-
dom peptides with unique sequences because each
immuno-selected peptide will carry only partial homol-
ogy for the original target. Through the use of computa-
tional modeling, it is possible to derive a consensus
sequence from the selected peptides and identify the tar-
get epitope. The use of linear random peptides for this
strategy is limited because the conformation space avail-
able to linear peptides is great, allowing the linear pep-
tides to assume a large array of conformations.
Constraining the peptide by cyclization reduces the field
of conformational possibilities for the molecule and
results in the peptide adopting the most favourable con-
formation [14]. Further, the constrained nature of these
peptides causes them to adopt tertiary structure
enabling them to mimic conformational epitopes. In this
way, cyclized peptides present a more uniform structure
than linear peptides and, thus, are preferred ligands for
mapping conformational epitopes. Cyclization can be
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achieved simply by the incorporation of Cys residues at
the N- and C-termini of a given peptide. However, pro-
duction and manipulation of synthetic random peptide
libraries is costly and extremely laborious, necessitating
the use of biological strategies to make it feasible.

Genetic approaches for the production and manipulation

of random peptide libraries

To facilitate the generation of random peptide libraries,
genetic methods have been developed to introduce ran-
dom peptides into scaffold proteins which can then be
subjected to immunoaffinity selection followed by
sequencing of the coding sequence of the random pep-
tide. Common genetic methods for displaying random
peptide ligands including: phage display, bacterium and
yeast display, ribosome display and mRNA display.
Incorporation of random peptides into scaffold proteins
expressed on the surface of microbes (ex. phage display)
are limited by the complexity of the sequence libraries
that can be generated; for example, phage display
libraries and bacterial display libraries are typically lim-
ited by transfection efficiency to approximately 10° inde-
pendent members [15-17]. The yeast, Saccharomyces
cerevisiae, is very useful as a host cell in genetic engi-
neering because it folds and glycosylates heterologous
eukaryotic proteins [18] and can be used for surface dis-
play of eukaryotic proteins and peptides in a natural
conformation [19]; although, this property is not advan-
tageous for surface display of random cyclized peptides.
More recently, selection schemes based on the display
of the nascent peptide chain on the surface of the ribo-
some have been developed [20-22]. This approach has
the advantage of being fully in vitro and potentially
allowing larger libraries (10'%) to be explored; however,
selections must be performed under conditions that pre-
serve the integrity of the ribosome:mRNA:peptide tern-
ary complex. The ability to synthesize covalent mRNA-
peptide fusions by in vitro translation provides a differ-
ent approach to the in vitro selection and directed evo-
lution of peptides and proteins. This approach should
have significant advantages over all approaches that
require an in vivo step, because libraries of much greater
complexity can be generated in vitro. This is a critical
advantage for experiments in which a rare functional
sequence is being selected from a completely random
sequence initial library. Current methodologies can yield
mRNA-peptide fusion libraries consisting of 10'*~10'?
independent members [23,24]. However, the peptides
expressed in vitro will not be reduced and, thus, cannot
be used to generate cyclized ligands.

Our work has focused on the use of phage display for
the presentation of random cyclic peptides. We employ
the non-lytic phage, fd, that buds from their gram-
negative E. coli hosts through the periplasm where
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disulfide bonds are formed due to the presence of the
thiol-disulfide oxidoreductase (TDOR) family of
enzymes [25]. By incorporating sequences encoding ran-
dom peptides with only 2 Cys residues in frame with
the N-terminus of the phage pVIII coat protein, we
have produced libraries of cyclized random peptide with
loops ranging from 4 to 12 residues in length. Affinity-
selection of phage displaying random cyclized peptides
using specific monoclonal, or polyclonal, serum can
yield mimetics of conformational and discontinuous
antibody epitopes [26,27] as well as carbohydrate epi-
topes [28,29]. Computational modeling of the sequences
of the immunoaffinity-selected mimotopes has been
used with great success for the elucidation of target epi-
topes of monoclonal antibodies. Improved transforma-
tion methods has enabled the production of highly
complex libraries [30] making phage a desirable scaffold
for the manipulation of highly-diverse libraries of
cyclized peptides. Affinity-selection of specific mimo-
topes is typically accomplished by incubating the ran-
dom peptide phage library with antibodies that have
been immobilized on a solid matrix. Iterative washing
and binding steps allow for enrichment of phage carry-
ing peptide inserts that are specific for the immobilized
antibodies. The selected peptide sequences are then ana-
lyzed and assigned a location on the target protein using
algorithms that we designed based on specific correla-
tion analysis [31,32] or a variety of other algorithms that
have been developed based on similar principles [33,34].

Phage displayed mimotopes can be used to characterize
antigen-specific polysera

In 1994, Folgori et al. employed a library of phage-
displayed random peptides to characterize antibody
specificities in polyserum from patients vaccinated
with Hepatitis B virus surface antigen (HBsAg) [35].
They identified mimotopes of two different epitopes
within HBsAg. Sera from 20 different vaccinees dis-
played reactivity for these mimotopes, while sera of
non-immune individuals failed to bind. This study
opened a new approach to diagnostics and vaccine
development based on phage display epitope library
screening. Similarly, random peptide libraries were
screened with polysera from patients with Lyme dis-
ease and 17 peptides were selected that distinguished
patients with Lyme disease from healthy controls,
demonstrating the value of this technology for devel-
oping serological diagnostic tests [36].

The phage display technology has been used to inves-
tigate the nature of anti-HIV antibodies present in poly-
serum from long-term non-progressors (LTNPs). These
individuals typically possess antibodies with broad neu-
tralization [37-39]. Understanding the epitope targets of
these broadly neutralizing antibodies could provide
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important information for developing diagnostic tools
and vaccination strategies. In the first study of this kind,
Scala et al. identified ten mimotopes, which had wide
cross-reactivity with polysera from LTNPs and SHIV-
infected monkeys [40]. The phage-borne epitopes were
immunogenic and four out of five monkeys immunized
with these phages experienced lower levels of peak vire-
mia following infection [40], supporting the use of this
technology for vaccine development. Another study was
performed with polyserum from a single LTNP patient,
which identified a single epitope located in gp41 protein.
Probing the isolated phages with variety of sera revealed
that different sera have different affinity to mimotope
variants (some sera did not bind some of the variants at
all) thus demonstrating the diversity of the immune
response [32]. This diversity likely reflects variability
among the circulating virus strains within the regions
that are targeted by antibodies; understanding the rela-
tionship between this diversity and effective neutraliza-
tion will likely provide novel insight into the
mechanisms of neutralization.

Since mimotopes generally display only small homolo-
gies with the target protein, large numbers of unique
mimotopes are required to properly analyze complex
polysera. The Dietrich group reported a study wherein
~700 mimotopes were selected by screening a phage
display epitope library with eight LTNP patient sera
[41]. Some of the mimotope sequences were attributed
to HIV antigens based on linear homology and confor-
mational similarities. However, it remains unclear
whether the predicted epitopes represent targets for
neutralization since immunization of mice with mimo-
topes selected from their phage collection only produced
modest HIV-specific antibody responses with low neu-
tralizing potential. Therefore, although this technology
offers great promise for serological diagnostics, as in the
case of Hepatitis B virus vaccinees and patients afflicted
with Lyme disease, further refinement is required to
employ this methodology for discerning specific neutra-
lizing epitopes, as in the case of LTNPs.

Algorithms for deciphering epitopes using collections of
affinity-selected mimotopes

In terms of characterizing polyserum using this metho-
dology, our ultimate goal is to employ the mimotopes to
define specific epitopes. While this has been done suc-
cessfully for monoclonal antibodies [11,32,42,43] where
the target antigen is well-defined, this process is sub-
stantially more complicated in the case of polyclonal
sera where a constellation of antigens are targeted. A
common strategy for epitope identification involves sim-
ple homology searches where the linear sequence of the
peptide is aligned with the corresponding linear
sequence of a putative antigen [41]. However, this
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approach is applicable only for linear, or partially-
conformational epitopes, which consist of small linear
fragments. Strategies based on linear homology cannot
be applied to genuine conformational epitopes since
very few residues will be proximal to each other in the
linear sequence. Additionally, we have observed that
application of the linear alignment method identifies
short linear fragments (typically 3-5 amino acids) that
appear to be specific but are actually non-specific as
they can also be found in the irrelevant proteins that we
use for negative controls (Denisov, Denisova and Bram-
son, unpublished data). As an example, the sequence
TPPG was uncovered as a common linear element
within phage-displayed mimotopes isolated with poly-
serum from West Nile-infected individuals and this
sequence maps equally well to great numbers of non-
viral protein sequences taken from the NCBI protein
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database. Similar results were obtained with other short
homologies like PAS, RSLT and RRP. The mimotopes
containing these fragments can be attributed to many
proteins suggesting that they likely represent common
backbone motifs that provide a basic structure to the
peptide for low-affinity antibody binding and they com-
plicate unambiguous epitope mapping using linear
homologies. Similar observations have been made by
other groups [44] where turn-like structures for the
sequences DVQX, XPGS, DITX, and DXSF were con-
served between specific epitopes and a number of unre-
lated proteins, suggesting that these linear epitopes have
inherent conformational preferences.

To deal with the complexity of large collections of
conformational mimotopes, we have developed a novel
method based on pattern recognition theory [45-47]
(Fig. 1). The analysis consists of two phases: learning

Pattern Recognition Method
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Figure 1 Scheme of computer algorithm based on pattern recognition theory. Signs — amino acid pairs chosen from different positions
within an epitope sequence . Dipi — discrimination parameter equal to total number of epitope specific “signs” found at learning step. sP —
“space pairs” - amino acid pairs separated in a peptide by one, two, three amino acids . QsP - is the quality of sP which is defined by the
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and identification. During the learning phase, a large
collection of epitope-specific mimotopes is assembled
through affinity-selection using specific monoclonal
antibodies. The collected peptides are analyzed to iden-
tify epitope specific signs using a novel computer algo-
rithm that examines all possible amino acid pair
combinations within the peptide collection and selects
the combinations that are specific for the predicted epi-
topes. The signs we employ are amino acid pairs chosen
from different positions within an epitope sequence;
unique signs can be identified which are specific to
individual epitopes. Such signs can also be identified by
direct analysis of theoretically predicted epitopes
[45,48]. During the identification phase, mimotopes
selected using patient polyserum are interrogated for
the presence of the epitope specific signs found during
the learning phase. Using statistical methods, mimo-
topes are subsequently identified based on their signs
and assigned to specific epitopes. We recently published
a report describing the use of this approach for charac-
terizing the epitope specificity of polysera from West
Nile virus patients [45]. To accomplish this goal, we dis-
covered signs during the learning step using a recently
catalogued database of peptides that were affinity-
selected using monoclonal antibodies specific for the
West Nile virus E protein [31]. We then interrogated a
collection of 106 peptides selected with West Nile
virus-specific polyserum for evidence of epitope specific
“signs” that were derived during the learning step. Since
many of these peptides contain common amino acid
pairs, we also analyzed a similar sized collection of
unrelated peptides to develop a threshold setting. Imple-
mentation of this strategy is confounded by the com-
plexity of human polyserum with regard to antibody
diversity such that antibodies specific for a given epi-
tope likely constitute only a small fraction of the total
available antibody pool. Therefore, it is expected that
only a minority of the peptides selected by West Nile
virus-specific polyserum can be attributed to epitopes
on the West Nile virus E protein. To select the most
characteristic mimotopes for a given epitope, we defined
a discrimination parameter (dipi) for every peptide
which is equal to total number of epitope specific
“signs” found at learning step and employed this para-
meter to establish the threshold. The higher this thresh-
old is set, the greater the likelihood that we will
correctly attribute a given mimotope to the actual epi-
tope. However, the stringency provided by dipi must be
balanced to permit selection of a sufficient number of
peptides and to evaluate accuracy of the method. Sev-
eral peptides (10 of 29 in our case) contained signs that
could be attributed to different antibody epitopes indi-
cating that these peptides contain common motif. To
better understand the properties of these common
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motifs, we analyzed the total amino acid composition
within the mimotope sets that were assigned to unique
epitopes and those mimotopes that could be assigned to
multiple epitopes. We found that the more ambiguous
mimotopes were characterized by high proline content
(22.86%) compared to the specific epitopes peptides
(9.82%). Proline is present at higher than expected
abundance in random peptides presented by phage dis-
play [49,50]. Interestingly, proline-rich motifs have been
implicated in multiple protein—protein interactions
[51,52], so high proline content may reduce the need
for specific interactions between the F(ab) portion of
the antibody and the mimotope. Thus, it seems likely
that high proline content within certain mimotopes
decreases the selectivity of our affinity-selection metho-
dology. However, we have overcome this issue by
excluding peptides that are assigned to multiple epi-
topes with equivalent probability. While such a filter
will not completely remove nonspecific assignments, it
does greatly reduce them.

Employing mimotopes as the basis for epitope-specific
vaccination

While the mimotope strategy offers a powerful tool for
monitoring epitope-specific antibodies following vacci-
nation or infection, these mimetics may also provide a
useful basis for the development of epitope-specific vac-
cines. A critical parameter in this regard is the degree to
which the mimotope accurately mimics the cognate epi-
tope. Some peptides selected from phage-display
libraries by antibodies were used to successfully elicit
cross-reactive antibody responses in animal models
[53,54]; in some cases, these antibody responses have
conferred neutralization in vitro [55] and protection
[56]. However, many mimotope peptides failed to induce
antibodies cross-reactive with corresponding antigens
[57-60]. The issues related to the inability of mimotopes
to elicit antibodies that were reactive to the native anti-
gen were elegantly explored in the case of the B2.1
mimotope which was isolated using the anti-HIV neu-
tralizing antibody, b12 [61,62]. Although B2.1 displayed
high affinity for b12, immunization of mice and rabbits
with B2.1 failed to elicit HIV-specific antibodies. The
crystal structure of b12 complexed with B2.1 was solved
and compared to the structure of b12 bound to gp120
of HIV [61]. This comparison revealed that, although
the binding in both cases was specific, the mimotope
contacted different residues on b12 than gp120. These
data reveal that although affinity selected peptides are
antibody-specific, they are not always true mimetics of
the antigenic epitope. While we, and others, commonly
refer to immunoaffinity-selected peptides as mimotopes
on the basis of their specific ability to bind antibody, it
may be more appropriate to define them as binding



Denisova et al. Immunome Research 2010, 6(Suppl 2):56
http://www.immunome-research.com/content/6/52/S6

site-specific peptides. It is clear that some of these pep-
tides can display high-affinity interactions with the anti-
body binding site in way that is distinct from the true
epitope on the target protein. The antibody binding site,
which is formed by six hypervariable CDR loops, forms
a continuous surface approximately 2800 A* in area that
is responsible for antigen binding according to X-ray
crystallographic analysis. Yet, only a fraction of the CDR
surface is found to constitute the combining site. As an
example, for the monoclonal antibodies D1.3, HyHEL-5,
HyHEL-10, NC41, and Jel42, the surface that is used in
the binding to antigen represents only 21%, 27%, 28%,
32%, and 22%, respectively, of the total surface formed
by the CDRs. Similarly, the CDR residues that contact
the antigen represent only 25%, 37%, 36%, 33%, and
27%, respectively, of the total number of CDR residues.
It is not surprising, then, that when screening a complex
library of random peptides, some peptides will be identi-
fied which bind to regions within the binding site that
are not used to bind the target antigen. In this respect,
monoclonal antibodies can actually be considered poly-
specific [63]. Indeed, screening of peptide libraries with
a monoclonal antibody typically yields a collection of
different peptides that all have high affinity binding
[31,32,64-66]. Yet, upon simple examination, these pep-
tides do not have significant similarity to each other
despite the fact that they should share some of appro-
priately located contact residues to be able to bind the
antibody. Additionally, in view of the difference between
sizes of epitope (average ~20 amino acids) and phage
inserts, the mimotopes could mimic some aspects of
epitope and different mimotopes could have partially
overlapping sequences. The second reason for inability
of mimotopes to induce cross-reactive immune response
could be difference in a shape of binding site of antibo-
dies induced by native antigen and mimotopes. These
shapes are determined by the shape of the antigen and
it could be different for a flat protein surface and
extended peptides [67]. During affinity maturation anti-
body binding site acquires the best complementarities
for the peptide antigen and thus evolves from the best
fit for protein antigen binding. We believe that develop-
ing effective mimotope vaccines will require detailed
structural analysis of the antibody binding to the target
antigen to ensure that the best mimetics are selected in
order to use them for the development of epitope-speci-
fic vaccines.

Conclusion

Screening of a phage display library with polyclonal
serum is technically simple and amenable to routine
laboratory analysis. This technology permits fine charac-
terization of serum detecting not only antibodies directed
to different domains of a protein but also antibodies
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directed to specific epitopes [68]. Using this methodol-
ogy, it is possible to develop a characteristic “antibody
signature” that can distinguish between different polysera
directed at the same antigen [69]. Our results have
demonstrated that the pattern recognition algorithm can
effectively be employed to screen a mixture of antibodies
and define the breadth of epitopes recognized by poly-
serum directed against specific proteins. The method can
be further improved with a larger collection of mimo-
topes to be used in the learning step of the algorithm.
“Next Generation Sequencing” technology, which allows
sequencing of one gigabase of DNA in a couple of days
[70,71], might be beneficial in this regard, as it can
enable, presumably, the sequencing of millions of phage
in a single run. In principle, our pattern recognition
method could also be applied to cases when there are no
available monoclonal antibodies by using computational
strategies to predict antibody epitopes. Multiple algo-
rithms have been designed for prediction of antibody epi-
topes using atomic coordinates of the antigen or simple
amino acid sequences [48][72-74]. For example, it is
known that binding sites on a surface of proteins (com-
monly referred to as “hot spots”) have preferential amino
acid composition, secondary structures and packing den-
sity. Amino acids as tryptophan, arginine and tyrosine
were shown to be enriched in these hot spots [75]. We
used one of these approaches [73] for analysis of polyclo-
nal immune response to HER-2 protein and found that
our predictive algorithm gave the outcome similar to the-
oretically predicted epitopes [69]. Based on this informa-
tion and the algorithm described in the current review,
we are developing novel software tools that can predict
all hypothetical protein antigenic sites and present as sets
of amino acid pairs, which can subsequently be employed
as epitope signs for use with our mimotope recognition
computer algorithm.

While the selected mimotopes may prove useful in the
development of epitope-specific vaccines, the current
state of the art still relies on a high degree of chance in
the selection of the mimotope. To facilitate mimotope
selection for vaccine applications, highly diverse libraries
should be used for screening of polyclonal neutralizing
serum and large collections of mimotopes should be
selected. Computer assisted analysis of these large col-
lections can help to select mimotopes enriched with epi-
tope specific signs and scored according to the
discrimination parameter. Should this selection method
fail to reproducibly identify useful mimetics, it may be
necessary to combine our bioinformatics strategies with
structural analysis to identify “best fit” peptides.

List of abbreviations
HBsAg: Hepatitis B virus surface antigen; LTNP: long-term non-progressor; E
protein: envelope protein; CDR: complementarity determining regions; Signs:
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amino acid pairs chosen from different positions within an epitope
sequence; Dipi: discrimination parameter equal to total number of epitope
specific “signs” found at learning step; sP: “space pairs” - amino acid pairs

separated in a peptide by one, two, three amino acids; QsP: the quality of sP

which is defined by the occurrence of the particular sP in all epitope
mimotopes at learning.
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