Dill O, Kievits F, Koch S, Ivanyi P, Hämmerling GJ: Immunological function of HLA-C antigens in HLA-Cw3 transgenic mice.
Proc Natl Acad Sci USA 1988, 85:5664–5668.
Article
CAS
PubMed
Google Scholar
Littaua RA, Oldstone MB, Takeda A, Debouck C, Wong JT, et al.: An HLA-C-restricted CD8
+
cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag.
J Virol 1991, 65:4051–4056.
CAS
PubMed
Google Scholar
Snary D, Barnstable CJ, Bodmer WF, Crumpton MJ: Molecular structure of human histocompatibility antigens: the HLA-C series.
Eur J Immunol 1977, 8:580–585.
Article
Google Scholar
McCutcheon JA, Gumperz J, Smith KD, Lutz CT, Parham P: Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA.
J Exp Med 1995, 181:2085–2095.
Article
CAS
PubMed
Google Scholar
Korber BTM, Brander C, Haynes BF, Koup R, Moore JP, Walker BD, Watkind DI: HIV Molecular Immunology 2005. Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico 2005.
Google Scholar
Bugawan TL, Klitz W, Blair A, Erlich HA: High-resolution HLA class I typing in the CEPH families: analysis of linkage disequilibrium among HLA loci.
Tiss Antigens 2000, 56:392–404.
Article
CAS
Google Scholar
Neefjes JJ, Ploegh HL: Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with β2-microglobulin: differential effects of inhibition of glycosylation on class I subunit association.
Eur J Immunol 1988, 18:801–810.
Article
CAS
PubMed
Google Scholar
Neisig A, Melief CJ, Neefjes J: Reduced cell surface expression of HLA-C molecules correlates with restricted peptide binding and stable TAP interaction.
J Immunol 1998, 160:171–179.
CAS
PubMed
Google Scholar
Brusic V, Bajic VB, Petrovsky N: Computational methods for prediction of T-cell epitopes – a framework for modelling, testing, and applications.
Methods 2004, 34:436–443.
Article
CAS
PubMed
Google Scholar
Buchsbaum S, Barnea E, Dassau L, Beer I, Milner E, Admon A: Large-scale analysis of HLA peptides presented by HLA-Cw4.
Immunogenetics 2003, 55:172–176.
Article
CAS
PubMed
Google Scholar
Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs.
Immunogenetics 1999, 50:213–219.
Article
CAS
PubMed
Google Scholar
DeLuca DS, Khattab B, Blasczyk R: A modular concept of HLA for comprehensive peptide binding prediction.
Immunogenetics 2007, 59:25–35.
Article
CAS
PubMed
Google Scholar
Tong JC, Tan TW, Ranganathan S: Modeling the structure of bound peptide ligands to major histocompatibility complex.
Protein Sci 2004, 13:2523–2532.
Article
CAS
PubMed
Google Scholar
Tong JC, Bramson J, Kanduc D, Chow S, Sinha AA, Ranganathan S: Modeling the bound conformation of pemphigus vulgaris-associated peptides to MHC class II DR and DQ alleles.
Immunome Res 2006, 2:1.
Article
PubMed
Google Scholar
Tong JC, Zhang GL, Tan TW, August JT, Brusic V, Ranganathan S: Prediction of HLA-DQ3.2
β
ligands: Evidence of multiple registers in class II binding peptides.
Bioinformatics 2006, 22:1232–1238.
Article
CAS
PubMed
Google Scholar
Rognan D, Laumøller SL, Holm A, Buus S, Tschinke V: Predicting binding affinities of protein ligands from three-dimensional models: Application to Peptide Binding to Class I Major Histocompatibility Proteins.
J Med Chem 1999, 42:4650–4658.
Article
CAS
PubMed
Google Scholar
Tong JC, Bramson J, Kanduc D, Sinha AA, Ranganathan S: Prediction of desmoglein-3 peptides reveals multiple shared T-cell epitopes in HLA DR4- and DR6-associated pemphigus vulgaris.
BMC Bioinformatics 2006,7(Suppl 5):S7.
Article
PubMed
Google Scholar
Johnson RP, Trocha A, Buchanan TM, Walker BD: Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone.
J Virol 1993, 67:438–445.
CAS
PubMed
Google Scholar
Sayle RA, Milner-White EJ: RASMOL: biomolecular graphics for all.
Trends Biochem Sci 1995, 20:374.
Article
CAS
PubMed
Google Scholar
Brander C, Goulder PJR: Recent advances in HIV-1 CTL epitope characterization. In HIV molecular immunology database.
HIV Molecular Database
(Edited by: Korber BTM, Brander C, Haynes BF, Koup R, Moore JP, Walker BD, Watkind DI). Los Alamos National Laboratory. Los Alamos, New Mexico 1999, i1-i19.
Google Scholar
Buseyne F, Stevanovic S, Rammensee HG, Riviere Y: Characterization of an HIV-1 p24gag epitope recognized by a CD8+ cytotoxic T-cell clone.
Immunol Letters 1997, 55:145–149.
Article
CAS
Google Scholar
Fan QR, Wiley DC: Structure of Hla-Cw4, a Ligand for the Kir2D Natural Killer Cell Inhibitory Receptor.
J Exp Med 1999, 190:113–124.
Article
CAS
PubMed
Google Scholar
Abagyan RA, Totrov M: Ab initio folding of peptides by the optimal-bias Monte Carlo minimization procedure.
J Comput Phys 1999, 151:402–421.
Article
CAS
Google Scholar
Sidney J, del Guercio MF, Southwood S, Engelhard VH, Appella E, Rammensee HG, Falk K, Rötzschke O, Takiguchi M, Kubo RT, Grey HM, Sette A: Several HLA alleles share overlapping peptide specificities.
J Immunol 1995, 154:247–259.
CAS
PubMed
Google Scholar
Rajagopalan S, Long EO: The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity.
J Exp Med 1997, 185:1523–1528.
Article
CAS
PubMed
Google Scholar
The UniProt Consortium: The Universal Protein Resource (UniProt).
Nucleic Acids Res 2007, 35:D193-D197.
Article
Google Scholar
Srinivasan KN, Zhang GL, Khan AM, August JT, Brusic V: Prediction of class I T-cell epitopes: evidence of presence of immunological hot spots inside antigens.
Bioinformatics 2004, 20:i297-i302.
Article
CAS
PubMed
Google Scholar
Bradley AP: The use of the area under the ROC curve in the evaluation of machine learning algorithms.
Pattern Recognition 1997, 30:1145–1159.
Article
Google Scholar