Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs.
Immunogenetics 1999, 50:213–9.
Article
CAS
PubMed
Google Scholar
Gotch F, Rothbard J, Howland K, Townsend A, McMichael A: Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2.
Nature 1987, 326:881–2.
Article
CAS
PubMed
Google Scholar
Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG: Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules.
Nature 1991, 351:290–6.
Article
CAS
PubMed
Google Scholar
Pasquetto V, Bui HH, Giannino R, Mirza F, Sidney J, Oseroff C, Tscharke DC, Irvine K, Bennink JR, Peters B, et al.: HLA-A* HLA-A*1101, and HLA-B*0702 Transgenic Mice Recognize Numerous Poxvirus Determinants from a Wide Variety of Viral Gene Products.
J Immunol 0201, 175:5504–15.
Google Scholar
Allen TM, Sidney J, del Guercio MF, Glickman RL, Lensmeyer GL, Wiebe DA, DeMars R, Pauza CD, Johnson RP, Sette A, et al.: Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus.
J Immunol 1998, 160:6062–71.
CAS
PubMed
Google Scholar
Loffredo JT, Sidney J, Piaskowski S, Szymanski A, Furlott J, Rudersdorf R, Reed J, Peters B, Hickman-Miller HD, Bardet W, et al.: The High Frequency Indian Rhesus Macaque MHC Class I Molecule, Mamu-B*01, Does Not Appear to Be Involved in CD8+ T Lymphocyte Responses to SIVmac239.
J Immunol 2005, 175:5986–97.
CAS
PubMed
Google Scholar
Loffredo JT, Sidney J, Wojewoda C, Dodds E, Reynolds MR, Napoe G, Mothe BR, O'Connor DH, Wilson NA, Watkins DI, et al.: Identification of seventeen new simian immunodeficiency virus-derived CD8+ T cell epitopes restricted by the high frequency molecule, Mamu-A*02, and potential escape from CTL recognition.
J Immunol 2004, 173:5064–76.
CAS
PubMed
Google Scholar
Mothe BR, Sidney J, Dzuris JL, Liebl ME, Fuenger S, Watkins DI, Sette A: Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins.
J Immunol 2002, 169:210–9.
CAS
PubMed
Google Scholar
Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A: Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules.
Cell 1993, 74:929–37.
Article
CAS
PubMed
Google Scholar
Sette A, Sidney J, Bui HH, Del Guercio MF, Alexander J, Loffredo J, Watkins DI, Mothe BR: Characterization of the peptide-binding specificity of Mamu-A*11 results in the identification of SIV-derived epitopes and interspecies cross-reactivity.
Immunogenetics 2005, 57:53–68.
Article
CAS
PubMed
Google Scholar
Sidney J, del Guercio MF, Southwood S, Hermanson G, Maewal A, Appella E, Sette A: The HLA-A*0207 peptide binding repertoire is limited to a subset of the A*0201 repertoire.
Hum Immunol 1997, 58:12–20.
Article
CAS
PubMed
Google Scholar
Sidney J, Del Guercio MF, Southwood S, Sette A: The HLA Molecules DQA1*0501/B1*0201 and DQA1*0301/B1*0302 Share an Extensive Overlap in Peptide Binding Specificity.
J Immunol 2002, 169:5098–108.
PubMed
Google Scholar
Sidney J, Dzuris JL, Newman MJ, Johnson RP, Kaur A, Amitinder K, Walker CM, Appella E, Mothe B, Watkins DI, et al.: Definition of the Mamu A*01 peptide binding specificity: application to the identification of wild-type and optimized ligands from simian immunodeficiency virus regulatory proteins.
J Immunol 2000, 165:6387–99.
CAS
PubMed
Google Scholar
Sidney J, Grey HM, Southwood S, Celis E, Wentworth PA, del Guercio MF, Kubo RT, Chesnut RW, Sette A: Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules.
Hum Immunol 1996, 45:79–93.
Article
CAS
PubMed
Google Scholar
Sidney J, Southwood S, del Guercio MF, Grey HM, Chesnut RW, Kubo RT, Sette A: Specificity and degeneracy in peptide binding to HLA-B7-like class I molecules.
J Immunol 1996, 157:3480–90.
CAS
PubMed
Google Scholar
Sidney J, Southwood S, Mann DL, Fernandez-Vina MA, Newman MJ, Sette A: Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules.
Hum Immunol 2001, 62:1200–16.
Article
CAS
PubMed
Google Scholar
Sidney J, Southwood S, Pasquetto V, Sette A: Simultaneous prediction of binding capacity for multiple molecules of the HLA B44-supertype.
J Immunol 2003, 171:5964–5974.
CAS
PubMed
Google Scholar
Sidney J, Southwood S, Sette A: Classification of A1- and A24-supertype molecules by analysis of their MHC-peptide binding repertoires.
Immunogenetics 2005, 57:393–408.
Article
CAS
PubMed
Google Scholar
Kubo RT, Sette A, Grey HM, Appella E, Sakaguchi K, Zhu NZ, Arnott D, Sherman N, Shabanowitz J, Michel H, et al.: Definition of specific peptide motifs for four major HLA-A alleles.
J Immunol 1994, 152:3913–24.
CAS
PubMed
Google Scholar
Donnes P, Elofsson A: Prediction of MHC class I binding peptides, using SVMHC.
BMC Bioinformatics 2002, 3:25.
Article
PubMed
Google Scholar
Reche PA, Glutting JP, Zhang H, Reinherz EL: Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles.
Immunogenetics 2004, 56:405–19.
Article
CAS
PubMed
Google Scholar
Schueler-Furman O, Altuvia Y, Sette A, Margalit H: Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles.
Protein Sci 2000, 9:1838–46.
Article
CAS
PubMed
Google Scholar
Zhang GL, Srinivasan KN, Veeramani A, August JT, Brusic V: PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse.
Nucleic Acids Res 2005, 33:W180–3.
Article
CAS
PubMed
Google Scholar
Hertz T, Yanover C: PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
BMC Bioinformatics 2006,7(Suppl 1):S3.
Article
PubMed
Google Scholar
Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S: Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach.
Tissue Antigens 2003, 62:378–84.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lundegaard C, Worning P, Hvid CS, Lamberth K, Buus S, Brunak S, Lund O: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Bioinformatics 2004, 20:1388–97.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations.
Protein Sci 2003, 12:1007–17.
Article
CAS
PubMed
Google Scholar
Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V: MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides.
Nucleic Acids Res 2005, 33:W172–9.
Article
CAS
PubMed
Google Scholar
Guan P, Doytchinova IA, Zygouri C, Flower DR: MHCPred: bringing a quantitative dimension to the online prediction of MHC binding.
Appl Bioinformatics 2003, 2:63–6.
CAS
PubMed
Google Scholar
Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhutter HG: Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding.
Cell Mol Life Sci 2005, 62:1025–37.
Article
CAS
PubMed
Google Scholar
Hakenberg J, Nussbaum AK, Schild H, Rammensee HG, Kuttler C, Holzhutter HG, Kloetzel PM, Kaufmann SH, Mollenkopf HJ: MAPPP: MHC class I antigenic peptide processing prediction.
Appl Bioinformatics 2003, 2:155–8.
CAS
PubMed
Google Scholar
Udaka K, Wiesmuller KH, Kienle S, Jung G, Tamamura H, Yamagishi H, Okumura K, Walden P, Suto T, Kawasaki T: An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries.
Immunogenetics 2000, 51:816–28.
Article
CAS
PubMed
Google Scholar
Sathiamurthy M, Hickman HD, Cavett JW, Zahoor A, Prilliman K, Metcalf S, Fernandez Vina M, Hildebrand WH: Population of the HLA ligand database.
Tissue Antigens 2003, 61:12–9.
Article
CAS
PubMed
Google Scholar
Parker KC, Bednarek MA, Coligan JE: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains.
J Immunol 1994, 152:163–75.
CAS
PubMed
Google Scholar
Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, Mothe BR, Chisari FV, Watkins DI, Sette A: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications.
Immunogenetics 2005, 57:304–14.
Article
CAS
PubMed
Google Scholar
Gulukota K, Sidney J, Sette A, DeLisi C: Two complementary methods for predicting peptides binding major histocompatibility complex molecules.
J Mol Biol 1997, 267:1258–67.
Article
CAS
PubMed
Google Scholar
Peters B, Bui HH, Sidney J, Weng Z, Loffredo JT, Watkins DI, Mothe BR, Sette A: A computational resource for the prediction of peptide binding to Indian rhesus macaque MHC class I molecules.
Vaccine 2005, 23:5212–5224.
Article
CAS
PubMed
Google Scholar
Peters B, Tong W, Sidney J, Sette A, Weng Z: Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules.
Bioinformatics 2003, 19:1765–1772.
Article
CAS
PubMed
Google Scholar
Pinilla C, Martin R, Gran B, Appel JR, Boggiano C, Wilson DB, Houghten RA: Exploring immunological specificity using synthetic peptide combinatorial libraries.
Curr Opin Immunol 1999, 11:193–202.
Article
CAS
PubMed
Google Scholar
Nazif T, Bogyo M: Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors.
Proc Natl Acad Sci USA 2001, 98:2967–72.
Article
CAS
PubMed
Google Scholar
Uebel S, Kraas W, Kienle S, Wiesmuller KH, Jung G, Tampe R: Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries.
Proc Natl Acad Sci USA 1997, 94:8976–81.
Article
CAS
PubMed
Google Scholar
Nino-Vasquez JJ, Allicotti G, Borras E, Wilson DB, Valmori D, Simon R, Martin R, Pinilla C: A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes.
Mol Immunol 2004, 40:1063–74.
Article
CAS
PubMed
Google Scholar
Zhao Y, Gran B, Pinilla C, Markovic-Plese S, Hemmer B, Tzou A, Whitney LW, Biddison WE, Martin R, Simon R: Combinatorial peptide libraries and biometric score matrices permit the quantitative analysis of specific and degenerate interactions between clonotypic TCR and MHC peptide ligands.
J Immunol 2001, 167:2130–41.
CAS
PubMed
Google Scholar
Stryhn A, Pedersen LO, Romme T, Holm CB, Holm A, Buus S: Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding.
Eur J Immunol 1996, 26:1911–8.
Article
CAS
PubMed
Google Scholar
Udaka K, Wiesmuller KH, Kienle S, Jung G, Walden P: Decrypting the structure of major histocompatibility complex class I-restricted cytotoxic T lymphocyte epitopes with complex peptide libraries.
J Exp Med 1995, 181:2097–108.
Article
CAS
PubMed
Google Scholar
Lauemoller SL, Holm A, Hilden J, Brunak S, Holst Nissen M, Stryhn A, Ostergaard Pedersen L, Buus S: Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor-stratified calibrations.
Tissue Antigens 2001, 57:405–14.
Article
CAS
PubMed
Google Scholar
Peters B, Bui HH, Frankild S, Nielson M, Lundegaard C, Kostem E, Basch D, Lamberth K, Harndahl M, Fleri W, et al.: A community resource benchmarking predictions of peptide binding to MHC-I molecules.
PLoS Comput Biol 2006, 2:e65.
Article
PubMed
Google Scholar
Sidney J, Peters B, Moore C, Pencille TJ, Ngo S, Masterman KA, Asabe S, Pinilla C, Chisari FV, Sette A: Characterization of the peptide-binding specificity of the chimpanzee class I alleles A*0301 and A*0401 using a combinatorial peptide library.
Immunogenetics 2007.
Lauemoller SL, Kesmir C, Corbet SL, Fomsgaard A, Holm A, Claesson MH, Brunak S, Buus S: Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project.".
Rev Immunogenet 2000, 2:477–91.
CAS
PubMed
Google Scholar
Buus S: Description and prediction of peptide-MHC binding: the 'human MHC project'.
Curr Opin Immunol 1999, 11:209–13.
Article
CAS
PubMed
Google Scholar
Pinilla C, Appel JR, Blanc P, Houghten RA: Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries.
Biotechniques 1992, 13:901–5.
CAS
PubMed
Google Scholar
Sidney J, Southwood S, Oseroff C, Del Guercio MF, Sette A, Grey H: Measurement of MHC/Peptide Interactions by Gel Filtration.
Current Protocols in Immunology John Wiley & Sons, Inc 1998, 18.3.1–18.3.19.
Sette A, Sidney J, Livingston B, Dzuris J, Crimi C, Walker CM, Southwood S, Collins EJ, Hughes A: Class I molecules with similar peptide binding specificities are the result of both common ancestry and convergent evolution.
Immunogenetics 2003, 54:830–841.
CAS
PubMed
Google Scholar
van der Most RG, Concepcion RJ, Oseroff C, Alexander J, Southwood S, Sidney J, Chesnut RW, Ahmed R, Sette A: Uncovering subdominant cytotoxic T-lymphocyte responses in lymphocytic choriomeningitis virus-infected BALB/c mice.
J Virol 1997, 71:5110–4.
CAS
PubMed
Google Scholar
van der Most RG, Sette A, Oseroff C, Alexander J, Murali-Krishna K, Lau LL, Southwood S, Sidney J, Chesnut RW, Matloubian M, et al.: Analysis of cytotoxic T cell responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomeningitis virus infection.
J Immunol 1996, 157:5543–54.
CAS
PubMed
Google Scholar
Peters B, Sette A: Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method.
BMC Bioinformatics 2005, 6:132.
Article
PubMed
Google Scholar
Kanof ME, Smith PD, Zola H: Current Protocols in Immunology Wiley, San Diego 1997, 2:7.1.1–7.1.5.
Google Scholar
Rothbard JB, Lechler RI, Howland K, Bal V, Eckels DD, Sekaly R, Long EO, Taylor WR, Lamb JR: Structural model of HLA-DR1 restricted T cell antigen recognition.
Cell 1988, 52:515–23.
Article
CAS
PubMed
Google Scholar
Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, Janetzki S, Ferrari G, Birx DL, Cox JH: A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays.
J Immunol Methods 2002, 260:157–72.
Article
CAS
PubMed
Google Scholar
Tangri S, Ishioka GY, Huang X, Sidney J, Southwood S, Fikes J, Sette A: Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide.
J Exp Med 2001, 194:833–46.
Article
CAS
PubMed
Google Scholar
Kast WM, Brandt RM, Sidney J, Drijfhout JW, Kubo RT, Grey HM, Melief CJ, Sette A: Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins.
J Immunol 1994, 152:3904–12.
CAS
PubMed
Google Scholar
Parker KC, Bednarek MA, Hull LK, Utz U, Cunningham B, Zweerink HJ, Biddison WE, Coligan JE: Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2.
J Immunol 1992, 149:3580–7.
CAS
PubMed
Google Scholar
The Immune Epitope Database and Analysis Resource
[http://www.immuneepitope.org]
Peters B, Sette A: Integrating epitope data into the emerging web of biomedical knowledge resources.
Nat Rev Immunol 2007, 7:485–90.
Article
CAS
PubMed
Google Scholar
Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, et al.: The immune epitope database and analysis resource: from vision to blueprint.
PLoS Biol 2005, 3:e91.
Article
PubMed
Google Scholar
The Immune Epitope Database MHC Class I Binding Prediction Resource
[http://mhcbindingpredictions.immuneepitope.org/]
Kondo A, Sidney J, Southwood S, del Guercio MF, Appella E, Sakamoto H, Celis E, Grey HM, Chesnut RW, Kubo RT, et al.: Prominent roles of secondary anchor residues in peptide binding to HLA-A24 human class I molecules.
J Immunol 1995, 155:4307–12.
CAS
PubMed
Google Scholar
Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P: Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes.
Curr Biol 1995, 5:179–90.
Article
CAS
PubMed
Google Scholar
Oseroff C, Kos F, Bui HH, Peters B, Pasquetto V, Glenn J, Palmore T, Sidney J, Tscharke DC, Bennink JR, et al.: HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation.
Proc Natl Acad Sci USA 2005, 102:13980–5.
Article
CAS
PubMed
Google Scholar
DiBrino M, Parker KC, Shiloach J, Turner RV, Tsuchida T, Garfield M, Biddison WE, Coligan JE: Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8.
J Immunol 1994, 152:620–31.
CAS
PubMed
Google Scholar
Sette A, Sidney J: Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism.
Immunogenetics 1999, 50:201–12.
Article
CAS
PubMed
Google Scholar
Lund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P, Sylvester-Hvid C, Lamberth K, Roder G, Justesen S, et al.: Definition of supertypes for HLA molecules using clustering of specificity matrices.
Immunogenetics 2004, 55:797–810.
Article
CAS
PubMed
Google Scholar
Hertz T, Yanover C: Identifying HLA supertypes by learning distance functions.
Bioinformatics 2007, 23:e148–55.
Article
CAS
PubMed
Google Scholar
Tong JC, Tan TW, Ranganathan S: In silico grouping of peptide/HLA class I complexes using structural interaction characteristics.
Bioinformatics 2007, 23:177–83.
Article
CAS
PubMed
Google Scholar
Doytchinova IA, Guan P, Flower DR: Identifiying human MHC supertypes using bioinformatic methods.
J Immunol 2004, 172:4314–23.
CAS
PubMed
Google Scholar
Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, Hewitt HS, Linde CH, Kavanagh DG, Woodberry T, et al.: Extensive HLA class I allele promiscuity among viral CTL epitopes.
Eur J Immunol 2007, 37:2419–33.
Article
CAS
PubMed
Google Scholar