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Abstract

Sequence based T-cell epitope predictions have improved immensely in the last decade. From predictions of pep-
tide binding to major histocompatibility complex molecules with moderate accuracy, limited allele coverage, and
no good estimates of the other events in the antigen-processing pathway, the field has evolved significantly. Meth-
ods have now been developed that produce highly accurate binding predictions for many alleles and integrate
both proteasomal cleavage and transport events. Moreover have so-called pan-specific methods been developed,
which allow for prediction of peptide binding to MHC alleles characterized by limited or no peptide binding data.
Most of the developed methods are publicly available, and have proven to be very useful as a shortcut in epitope
discovery. Here, we will go through some of the history of sequence-based predictions of helper as well as cyto-
toxic T cell epitopes. We will focus on some of the most accurate methods and their basic background.

Challenges from infectious diseases

From the dawn of life, there has been a constant risk of
infection by foreign organisms so that only host organ-
isms that have developed an effective protection against
these pathogens survived through evolution. On the
other hand, this has put an evolutionary pressure on the
pathogenic organisms to circumvent the developed pro-
tection mechanisms. Especially single-celled organisms
and viruses, which generally have a relatively short gen-
eration time occasionally combined with a high muta-
tion rate, have succeeded in finding loopholes in the
protection. This million-year old arms race has led to
the development of a defense system, the immune sys-
tem, which itself consists of genetically diverse unicellu-
lar components that can evolve within the host
organism when put under selective pressure. Occasion-
ally, pathogens have evolved that efficiently could infect
a specific host organism leading to high mortality. This
is typically seen after a change of host [1]. Obviously,
too high mortality among the host species would logi-
cally also lead to the pathogenic organism’s own end.
Due to geographic and biological barriers, such disasters
generally hit only locally and were limited to
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neighboring populations, while physically isolated popu-
lations avoided infection [2]. Today there are no longer
any major restrictions on mobility and contact between
human populations, which increases the small but pre-
sent risk of a new pathogen posing a threat for the
existing civilization. Several examples from the past few
years have further exposed such threats; the SARS out-
break in 2003 did relatively quickly spread to several
continents [3], and a high mortality has been observed
in cases where certain strains of the avian flu, Influenza
A H5NI1 infect humans [4]. The recent Influenza A
H1IN1 pandemic, originating from pigs, is the latest
example of how extensive these infections can be [5,6].
Fortunately, humans have recently been spared from the
emergence of new pathogens that are at the same time
both very contagious and extremely deadly. Chronic
infections, which have little acute mortality but moder-
ate to high mortality in longer terms are another grow-
ing problem. Examples of such are infections with
hepatitis C virus (HCV), human immunodeficiency virus
(HIV), and tuberculosis (TB).

The immune system and vaccines

The most effective protection against infections is
through vaccination. Most vaccines today exist as an
inactivated or more harmless form of the pathogenic
organism. In several cases, there are problems with
either the efficacy, side effects, or that the pathogen is
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constantly changing and thus escapes the vaccine’s pro-
tection. The latter issue is one of the major obstacles to,
for instance, a long lasting Influenza A vaccine. Vaccines
take advantage of the features of the adaptive immune
system. The immune system in general reacts to foreign
substances and organisms when discovered in the body.
The innate immune system gives a fast and unspecific
response, which does not change with repeated occur-
rences of the same pathogen. The innate immune
response might eliminate the intruder by itself but it
also signals to the adaptive part of the immune system
[7]. An existing effective humoral immunity is an extre-
mely potent way of preventing an actual infection as the
intruder will be eliminated immediately. For this reason
vaccine development has traditionally been focusing on
developing effective antibody responses, which can be
obtained using totally inactivated pathogens, parts
thereof, or even single proteins in case of vaccines
against toxins such as tetanus or diphtheria [8]. How-
ever, to obtain strong and long lasting memory it
appears that a strong T cell response is often needed
[9]. The cellular arm of the immune system consists of
two parts; cytotoxic T lymphocytes (CTL), and helper T
lymphocytes (HTLs). Both CTL and HTL recognize
peptides that are presented on the cell surface to the
immune cells by the major histocompatibility complex
(MHC) molecule, which in humans is referred to as the
Human Leucocyte Antigen (HLA). While HTLs are
needed for B cell activation and proliferation to produce
antibodies against a given antigen, CTLs perform sur-
veillance of the host cells and recognize and kill infected
or malfunctioning cells that present non-self peptides
(epitopes) [10]. In a vaccine context, the relevant pro-
teins expressed by a given pathogen are the proteins
that will be determining for a good immune response,
i.e., the antigens. The part of the antigen that is recog-
nized by the immune system is the epitope, and in the
case of both the CTL and the HTL such epitopes con-
sist of small, 8-20 amino acid long polypeptides.

CTL epitopes

In the MHC class I pathway, peptides from endogenous
antigens bound to class I MHCs are presented to CTLs,
which are carrying the CD8 receptor (CD8+ T cells). To
be presented, a precursor peptide is usually first gener-
ated by the proteasome, a large cytosomal protease
complex [11,12]. For further processing, the peptides
must enter the endoplasmic reticulum (ER). This gener-
ally happens by active transport mediated by the trans-
porter associated with antigen processing (TAP) [13].
However, some peptides can enter the ER even with an
absent TAP function, as some presented peptides origi-
nate from proteins containing a signal peptide. These
proteins may enter the ER through the Sec61
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transporter complex [14] and should be considered
especially when dealing with infected or malignant cells
that might have an impaired TAP function [15,16]. This
is highly relevant for peptides binding to MHCs belong-
ing to the abundant A2 HLA serotype where TAP inde-
pendent presentation is responsible for up to 10% of the
A2 restricted epitopes [17]. During or after transport
into the ER a potential epitope must bind to the MHC
class I molecule [18,19] generally facilitated by the
helper protein tapasin [20,21], before it can finally be
presented on the cell surface. The most selective step in
the classical MHC class I pathway is binding of a pep-
tide to the MHC molecule. To be an epitope, i.e., to
raise a CTL response, a peptide should generally bind
with an affinity stronger than 500 nM [22]. As a support
for this general assumption, Moutaftsi et al. [23] found
that of the 49 epitopes that are responsible for 95% of
the total CD8+ T cell response against a vaccinia chal-
lenge in mice 90% bind MHC with an affinity stronger
than 500 nM. The work by Moutaftsi et al. also clearly
underlines the usefulness of predictions in vaccine
development, as only a very limited subset of peptides
derived from the vaccinia proteome had to be tested to
identify epitopes responsible for 95% of the CTL
response. The tested subset included only the best 1%
predicted of all the possible peptides.

MHC class | binding predictions

Since MHC binding of a peptide is a necessary require-
ment for its recognition by a T cell, predicting their cap-
ability to bind MHC molecules can facilitate and
significantly cost-reduce the identification of T cell epi-
topes in a set of peptides. The majority of peptides
binding to MHC class I molecules have a length of 8-
11 amino acids, even though several longer epitopes
have been identified [24]. The second position and the
C-terminal position of the peptide are typically the most
important for binding, and these positions are referred
to as anchor positions [25,26]. For some alleles, the
binding motifs further have auxiliary anchor positions.
For example, peptides binding to the human HLA-
A*0101 allele have position 3 as an additional anchor
[25,27,28]. Only few different amino acids are tolerated
at the anchor positions of peptides binding to a given
MHC allele. The discovery of such allele-specific motifs
led to the development of the first algorithms for pre-
diction of peptide binding [29-31], which essentially
determined whether a peptide did or did not match the
binding ‘motif of the MHC molecule.

As more data has accumulated, it has become possible
to go beyond the match/mismatch classification of a
motif prediction. By use of statistical methods, scores
can be calculated for each possible amino acid at each
position in a peptide, leading to an Lx20 scoring matrix
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where L is the length of the peptide. For predictions, it
is then assumed that the amino acids at each position
along the peptide sequence contribute a certain binding
energy (the score from the matrix), which can indepen-
dently be added up to yield the overall binding energy
of the peptide [32-34]. This type of approach is used
by the EpiMatrix (commercial) [35], BIMAS (http://
www-bimas.cit.nih.gov/molbio/hla_bind/) [33], SYF-
PEITHI (http://www.syfpeithi.de/) [36], RANKPEP
(http://bio.dfci.harvard.edu/RANKPEP/) [37], Gibbs
sampler (http://www.cbs.dtu.dk/biotools/EasyGibbs/)
[38], SMM (http://tools.immuneepitope.org/analyze/
html/mhc_binding.html) [39], and ARB (http://tools.
immuneepitope.org/analyze/html/mhc_binding.html)
methods [40]. These methods differ in the way they
derive the matrix coefficients. Some are trained by sta-
tistical methods that analyze how often a given amino
acid is seen at a given position in binding versus non-
binding peptides. Matrix coefficients can also be deter-
mined by a machine learning procedure, which aims at
finding the coefficients that best explain the observed
binding data. This can be done by interpreting the
matrix scores for a peptide as predicted binding affi-
nities and by minimizing the distance between predicted
and measured values. This is the approach utilized by
SMM, which is presently the best performing matrix
method in published benchmark studies [41,42].
Matrix-based methods cannot take correlated effects
into account, i.e., where the contribution to the binding
affinity of an amino acid at one position depends on
amino acids at other positions in the peptide. Higher
order methods like artificial neural networks (ANNs)
and Support Vector Machines (SVMs) are ideally suited
to take such correlations into account [43-48]. These
methods can be trained with data either in the format
of binder/non-binder classification, e.g. binders from the
SYFPEITHI database of eluted peptides [36], or as real
affinity data as can be found in the Immune Epitope
Database (IEDB) [49,50]. Likewise the predictors can
either be trained to output a score that correlates with
the chance that a given peptide is a binder or to output
a score that corresponds to a predicted affinity [51]. The
ANN based predictor NetMHC [45,47,52] was trained
using both sequence input from affinity data mainly
found in the IEDB as well as output from matrices gen-
erated by SYFPEITHI [36] eluted peptides using the
Gibbs sampler approach [47]. In two recent benchmark
comparisons the NetMHC-3.0 implementation was the
most successful method including higher order sequence
correlations [41,42]. The NetMHC method has been
further improved in the NetMHC-3.2 version (http://
www.cbs.dtu.dk/services/NetMHC) by training on data
with larger peptide and allelic coverage. (Lundegaard
et al,, J. Imm. Meth., submitted). As mentioned earlier,

Page 3 of 14

most epitopes and MHC binding peptides discovered to
date are of length 8, 9, or 10 amino acid residues, even
though longer epitopes have been identified, mostly
hendecamers, but also a few even longer [24]. Data dri-
ven prediction-algorithms for MHC class I binding are
for the most part limited to predict the same lengths as
they have been trained on, and in the IEDB, very few
examples of such longer peptides exist today. Of all
unique eluted MHC binding peptides in the current ver-
sion of the IEDB database, only 10% are longer than 10
residues and 4% are longer than 11. Some MHC:peptide
binding methods have been developed using the infor-
mation of the three dimensional structure of known
complexes. These methods should in principle be able
to predict binding also of longer peptides. However, not
even on nonamer peptides are these methods as accu-
rate as the data driven methods [53,54], and have to our
knowledge not been benchmarked on longer peptides. It
has been shown, though, that predictions from methods
trained on nonamer peptides can be used to predict the
affinity of longer peptides, which has been benchmarked
with peptides of a length up to 11 residues [55]. This
system has been implemented into the NetMHC
method. To summarize: of the prediction methods pub-
licly available online, the neural network based NetMHC
performs best on the tested evaluation sets, followed by
the matrix based SMM [41,42]. The SMM training and
prediction code is freely available [39]. The implementa-
tion of online consensus MHC class I prediction tools is
currently in progress at the IEDB site (Bjorn Peters, per-
sonal communication), as an approach of combining dif-
ferent prediction methods might give even better results
[56]. How accurate the best of methods are can be
exemplified by comparing the prediction accuracy of the
single methods with the correlation between different
experimental methods [42]. Both the SMM and the
NetMHC methods are available via the IEDB website
(http://www.immuneepitope.org) [56], and NetMHC is
additionally accessible from http://www.cbs.dtu.dk/ser-
vices/NetMHC.

Today more than 2000 HLA alleles have been identi-
fied, and as they in principle bind different peptide
repertoires, the task of mapping the peptide preferences
for each and every one of these would be experimentally
overwhelming. Initially only the most common alleles
were examined, but it was soon clear that some alleles
were sharing peptide preferences often, which did not
always correlate with the amino acid sequence similarity
of the compared alleles [57]. This discovery lead to the
concept of supertypes, where several alleles are clustered
into groups (supertypes), based on the degree of func-
tional similarity (Figure 1) [57-63]. In this approach still
only the most common alleles were studied, however,
the population coverage of identified epitopes could be
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is given by their relative contribution to the binding specificity.
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Figure 1 Depiction of the supertype concept. Example alleles including alleles common in the western European populations were assigned
to four supertypes using the scheme from Sidney et al. [63]. The amino acid preferences at each position in a nonamer peptide is shown for
each of the alleles using sequence logo plots taken from MHCMotifViewer [129]. Amino acids with positive influence on the binding are plotted
on the positive y-axis, and amino acids with a negative influence on binding are plotted on the negative y-axis. The height of each amino acid

theoretically extrapolated assuming complete peptide
binding overlap between alleles within a given supertype.

Lately, the amount of publicly available binding data
has increased significantly mainly due to the huge effort
funded by NIH resulting in the IEDB database [49].
This database is now very extensive both in terms of the
number of different peptides and the number of differ-
ent MHC alleles for which binding data exist. Further-
more, the MHC class I binding data are very
homogeneous in quality as more than 99% of the quan-
titative binding data in the IEDB database generated
since 2006 were generated by two comparable assays
developed in the laboratories of A. Sette and S. Buus
[64-67]. More than 95% of the class I data has been gen-
erated since 2005, and less than 2% before 2001. How-
ever, besides leading to MHC prediction systems, which
now cover a large number of different HLA alleles

[42,68], this large growth in the amount of MHC pep-
tide-binding data has enabled the development of new
so-called pan-specific algorithms. These pan-specific
methods go beyond the conventional single allele
approach and are able to predict peptide-binding to
HLA alleles, for which the sequence is known but only
limited or no experimental binding data are available
[68-73]. The architecture of the training system of
NetMHCpan has been outlined in a way that takes both
the peptide sequence and the MHC contact environ-
ment into account (Figure 2). Polymorphic positions in
the MHC assumed to be in contact with a residue in a
bound peptide have been mapped in order to extract a
pseudo sequence representing the given MHC molecule
[72]. This pseudo sequence is used as input in the train-
ing coupled with a peptide sequence and the measured
affinity of the given peptide:MHC. Thus, the machine
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YFAMYGEXVAHTHYDTLYVRYHYYTWAVLAYTWY

Peptide Anino acids of HLA pockets HLA
VVLQQHSIA YFAVLTHYGEKVHTHVDTLVRYHY AB201
SQVSFQQPL YFAVLTWYGEKVHTHVDTLVRYHY A92061
SQCQATHNY YFAVLTHYGEKYHTHVDTLVRYHY AB261
LQQSTYQLV YFAVLTWYGEKVHTHVDTLVRYHY AB201
LQPFLQPQL YFAVLTHWYGEKVHTHVDTLVRYHY AB201
VLAGLLGNY YFAVLTHWYGEKYHTHVOTLVRYHY AB261
VLAGLLGNY YEAVHTWYGEKVHTHVDTLLRYNY AB202
VLAGLLGNV YFAEWTWYGEKVHTHVDTLVRYHY AB283
VLAGLLGNV YYAVLTWYGEKVHTHVDTLVRYHY AB2086
VLAGLLGNV YYAVHTHYRNNVQTOVOTLIRYHY AGEO2

GSHSMRYFFTSVSRPGRGEPRAAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYWDGETRK VKAHS
QTHRVDLGTLRGYYNQSEAGSHTVQARMYGCONVGSDWRALRGYHQYAYDGKDYIALKEDLRSWTAADM
AAQTTKHKWEAAHVAEQLRAYLEGTCVEWLARY LENGKETLQRTDAPK THMTHHAVSDHEATLRCWALS
FYPABITLTWQRDGEDQTQOTELVETRPAGDG TFQKWYAVVWPSGQEQRYTCHVQHEGLPKPLTLRW

Figure 2 Description of the NetMHCpan approach. A) Amino acids used for prediction are residues from the MHC alpha chain that are
found to be in contact with the peptide using structural data (blue in left) and the full binding peptide (right). B) The identified MHC residues
in the amino acid sequence of HLA-A*0201 are labeled blue. C) The labeled residues from B presented as a pseudo sequence (left) and the
peptide sequence (right). D) Pairs of peptide sequences (left) and pseudo sequences (second from left) are presented to the ANN with the
experimentally determined log scaled affinity (far right). The displayed allele information is not an input to the ANN. During the training the
weights are adjusted in order to minimize the error between predicted output and the assigned affinity.
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learning method behind the predictions is trained to be
able to combine the information provided by the MHC
sequence and the peptide sequence in order to predict a
specific binding affinity. In this way, the system can
combine information from the MHC sequence with the
peptide sequence to derive cross correlations and is able
to predict the outcome of MHC:peptide combinations
that it has not encountered during the training. Several
pan-HLA methods have been evaluated in a large-scale
benchmark, and the outcome of this evaluation demon-
strated the power of the pan-specific methods. Not only
do these methods predict peptide-binding affinities to
previously uncharacterized MHC molecules but the

incorporated training setup also boosts the predictive
performance for already characterized alleles by lever-
aging information from neighboring MHC molecules
[74], see Table 1. Kiss [70] is available from http://cbio.

Table 1 Performance of available pan-specific predictors

Performance Measure  Kiss ADT NetMHC  NetMHCpan
Pearson CC 0455 0488 0593 0.620
Spearmans Rank CC 044 0522 0561 0.600
AUC 0734 0756  0.807 0.820

Performance values taken from [74]. The prediction servers have been
evaluated on a set of binders to 17 HLA-A alleles and 16 HLA-B alleles. The
data had not been used for training of any of the tested alleles.
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ensmp.fr/kiss/, ADT [71] is available at http://atom.
research.microsoft.com/hlabinding/, and NetMHCpan
[72,73] is available at http://www.cbs.dtu.dk/services/
NetMHCpan. The latter server has implemented the
approach of extrapolating from 9mers to prediction of
binding for peptides up to 11 residues in length [55]
and allows prediction for all known HLA-A, -B, and -C
alleles, as well as some non-human primate, mouse and
pig MHC alleles.

In an attempt to perform a completely unbiased
benchmark of different MHC binding prediction
approaches, several groups have participated in a com-
petition that has been held in connection with the
ICANN 09 conference (http://www.kios.org.cy/
ICANNO9/MLLhtml). The binding to the MHC alleles
HLA-A*0101, HLA-A*0201, and HLA-B*0702 were to
be predicted for a total of 177 10mer peptides and 265
9mers. The results of this competition placed NetMHC-
3.2 and NetMHCpan-2.2 as the best performing meth-
ods on the benchmark set, and a prediction approach
using the simple mean of the predictions from these
two methods was awarded the first price among the 20
competing methods (Vladimir Brusic, personal commu-
nication, submitted to J. Imm. Meth.).

Prediction of other MHC class | pathway events

In the following, we describe predictions of proteasomal
cleavage and TAP binding. The proteins responsible for
these events are basically monomorphic, and developers
of prediction methods do not face the same allele pro-
blem as is present for MHC binding prediction. This
should in principle make the task of developing accurate
prediction methods easier. This is, however, not the case
as the assays determining the cleavage and binding are
not developed for high throughput to the same extent
as is the case for MHC:peptide binding assays. For this
reason data for these two processing events are in gen-
eral scarce.

The complex enzymatic specificity of the proteasome
makes the prediction of its cleavage patterns highly
challenging. The proteasome comprises multiple cataly-
tically active sites, each with a distinct specificity [75,76].
A further complication is that two versions of the pro-
teasome exist. The proteasome that functions in most
cells and which has the main task of recycling superflu-
ous or malfunctioning proteins is constitutively
expressed and is therefore called the constitutive protea-
some. An inducible version of the proteasome, the
immunoproteasome, is expressed when a cell receives
signals from the innate or the adaptive immune system
indicating that it should enter an ‘alarm’ state. The
immunoproteasome has catalytic subunits with different
specificity than the constitutive proteasome. This change
gives rise to a catalytic complex, which cleaves proteins
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into fragments that are better processed by the other
players in the MHC class I pathway [77]. The outcome
of proteasomal cleavage has been considered in two
separate ways when it comes to predictive purposes.
One way is to predict the chance of a given position in
the protein sequence to be cleaved. Another approach is
to predict the likelihood that a given peptide fragment
will arise after proteasomal cleavage. FragPredict, which
is publicly available as a part of MAPPP service (http://
www.mpiib-berlin.mpg.de/MAPPP/), takes the latter
approach and consists of two sequential algorithms. The
first algorithm uses a statistical analysis of cleavage-
enhancing and -inhibiting amino acid motifs to predict
potential proteasomal cleavage sites [78]. The second
algorithm predicts the likelihood that a given peptide
fragment will arise using the results of the first algo-
rithm as an input. The second algorithm has been devel-
oped to select the most likely fragments to be generated.
The model calculates the time-dependent degradation
based on a kinetic model of the 20S proteasome [79].
The PAProC (http://www.paproc.de) method predicts
in vitro proteasomal cleavages performed by human and
wild type and mutant yeast proteasomes. The influence
of different amino acids at different positions is deter-
mined by using a stochastic hill-climbing algorithm [80]
based on the experimentally verified in vitro cleavage
and non-cleavage sites [81]. A weight matrix method
has been developed which predicts both constitutive-
and immunoproteasomal cleavage specificity [82] trained
on the very limited in vitro proteasomal digest data
available. The NetChop [83] method has been trained
using information from C termini of naturally processed
MHC class I ligands. No other significant endopepti-
dases or exopeptidases processing the C-terminus of
peptides have been observed in the cell compartments
involved in the class I pathway. Therefore the C-termini
of MHC I presented peptides are believed to be created
by proteasomal cleavage. Since some of these ligands are
generated by the immunoproteasome and some by the
constitutive proteasome, such a method should predict
the combined specificity of both forms of proteasomes.
NetChop-2.0 was evaluated to be the best-performing
predictor on an independent evaluation set [84]. The
SVM based Pcleavage proteasomal cleavage predictor,
which is available online, has a published performance
comparable to that of NetChop-2.0 [85]. An update of
the NetChop method to version 3.0 [77] consists of a
combination of several ANNSs, each trained using a dif-
ferent sequence-encoding scheme of the data. NetChop-
3.0 (http://www.cbs.dtu.dk/services/NetChop) has an
increased sensitivity as compared to NetChop-2.0, with-
out lowering the specificity. A method using SVM pre-
dictions and apparently achieving very good results has
recently been published [86]. In their evaluation,
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however, the developers do not compare AROC/AUC
values, described by [87], which is the best suitable
value for comparison of the performance of these kind
of predictors [53]. The method is not available as soft-
ware, code, or server, and still awaits independent eva-
luation. Finally, a new method predicting the likelihood
that a given peptide originates from proteasomal clea-
vage has been implemented as a publicly available server
(http://peptibase.cs.biu.ac.il/PepCleave_II/) [88], and
according to the published evaluation this method
works well. Good benchmarks for a comparison of the
usefulness of the different types of predictions have not
yet been implemented.

Relatively few methods have been developed to pre-
dict the specificity of TAP. Daniel et al. [89] have devel-
oped ANNs using 9-mer peptides, for which the TAP
affinity was determined experimentally. Surprisingly,
they found that some MHC alleles such as alleles
belonging to the HLA-A*02 family have some natural
ligands with very low TAP affinities. This could either
be because TAP ligands can be trimmed in the ER
before binding to MHC molecules [90] and that a TAP
ligand therefore often enters the ER as a precursor to
the MHC binding peptide, or it could be due to alterna-
tive entrance routes, as described earlier. Peters et al.
[91] used an SMM based matrix to predict TAP affinity
for peptides of length 9 or longer.They used this model
to show that natural A2 ligands are well transported by
TAP in form of precursor peptides, hence confirming
the trimming hypothesis by Fruci et al. A number of dif-
ferent TAP binding prediction methods have since been
published as recently reviewed [54,92]. Several methods
utilizing machine-learning algorithms have been pub-
lished with a predictive performance superior to the
SMM method. It must be mentioned, though, that these
methods probably suffered from overtraining, and only a
single SVM based method, TAPREG (http://imed.med.
ucm.es), appears to have been able to match the predic-
tive performance of the SMM based method using a
new benchmark dataset [93]. However, while TAPREG
works only for nonamer peptide predictions, the SMM
based method was further generalized to work on pep-
tides that are longer than 9 amino acids. It was found
that mainly the three N-terminal residues and the C-
terminal residue had influence on the binding affinity of
TAP binding peptides [91,93]. Thus, the affinity of pep-
tides longer than 9 amino acid residues can be predicted
by using matrix scores only for the three N terminal
residues and the C terminal residue in the peptide.

The action of ERAAP peptidase has also been shown
to be important for peptide binding [24,94], and the
importance of tapasin in the class I presentation path-
way has recently become evident [20,21,95,96]. Data
regarding these players are still very scarce and their
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function has not been examined in relation to epitope
prediction, but it is likely that methods for prediction of
these events will be developed as data become available.

Integrated CTL epitope predictions and optimal
population coverage

Although predictions of MHC binding in itself can be
used to rank the possible CTL epitopes quite accurately
[97,98], even better predictions should be attainable if
other steps in the antigen processing and presentation
pathway were modeled and included in a final predic-
tion. Several attempts have been made to predict the
outcome of two or more steps involved in antigen pro-
cessing and presentation: MAPP (http://www.mpiib-
berlin.mpg.de/MAPPP/) [99], NetCTL (http://www.cbs.
dtu.dk/services/NetCTL) [100], NetCTLpan (http://www.
cbs.dtu.dk/services/NetCTLpan), MHCpathway (http://
tools-int-01.liai.org/analyze/html/mhc_processing.html)
[101], EpiJen (http://www.darrenflower.info/EpiJen/)
[102], and WAPP (http://www-bs.informatik.uni-tuebin-
gen.de/Services/WAPP) [103]. All of these methods
attempt to predict antigen presentation by integrating
peptide:MHC binding predictions with one or more of
the other events involved in the antigen presentation
pathway. How well do these methods perform, and
which of the methods work best? In a benchmark, a set
of verified epitopes can be used as the positive data set.
But having only positive data, it is only possible to get a
sensitivity score, and methods that will predict any pep-
tide as an epitope will reach the highest rank. On the
other hand, a negative data set (containing peptides that
cannot induce an immune response) is difficult to define
because it is impossible to guarantee that a peptide will
never be an epitope in any individual expressing a given
HLA allele. To circumvent this problem, epitopes from
extensively studied pathogens, such as HIV, are often
used as the positive set, and all other peptides that are
present in the whole proteome of the same pathogen
and have never been shown to give an immune response
are chosen as the negative set (non-epitopes), thus
assuming that they will at least have a very low prob-
ability of being epitopes. A comparison has been pub-
lished calculating the predictive performance of several
publicly available MHC-I presentation prediction meth-
ods [104]. The outcome, using such a large-scale bench-
mark on known HIV epitopes (http://www.cbs.dtu.dk/
suppl/immunology/CTL-1.2/HIV_dataset) revealed that
the NetCTL and MHCpathway methods were ranked
the most accurate with >75% of the epitopes ranking
among the top 5% peptides sorted by the prediction
score [104]. The majority of the described methods only
work for a limited number of MHC alleles. To date only
the NetCTLpan method has integrated the described
pan-specific MHC binding prediction systems with
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predictions of proteasomal cleavage and TAP transloca-
tion [98].

When testing predicted epitopes for response in
patients or donors the success rate is around 10%
depending on selected cutoff and pathogen [23,105,106].
Since the affinity predictions are far more accurate than
this there might be other issues to address. These could
be inherent issues such as stability of the peptide:MHC
complex (half life), the influence of tapasin on successful
MHC loading, MHC competition, or holes in the T cell
repertoire. But also the fact that many pathogens inter-
fere with the players in the classical MHC class I pathway
might influence the epitope repertoire [15]. The outline
and outcome of a selected set of epitope discovery
experiments have recently been reviewed elsewhere [51].

Helper T cell epitopes

Helper T cells with a T cell receptor (TCR) specific for
antigen-derived peptides must be activated to get strong
B cell responses [107]. The epitope recognized by a
helper TCR is usually somehow connected to the epi-
tope that is recognized by the B cell receptor, but the
two different receptors do not necessarily recognize
overlapping epitopes or even epitopes from the same
protein. T cells can recognize internal peptides that do
not need to be a part of the surface-surface interactions
with the B cell receptor. HTLs, which normally carry
the CD4 receptor and are therefore also called CD4+ T
cells, recognize peptides presented by the MHC class II
molecule on the surface of professional antigen present-
ing cells such as macrophages, dendritic cells, and B
lymphocytes. Peptides presented by class II MHCs
usually originate from internalized proteins, thus, class
II peptide presentation follows a different path than the
MHC class I presentation pathway [108]. In short, MHC
class II molecules associate with the invariant chain (i)
in the ER and the MHC:Ii complexes accumulate in
endosomal compartments. Here, Ii is degraded, while
another MHC-like molecule which in humans is called
HLA-DM, loads the MHC class II molecules with the
best available ligands originating from endocytosed anti-
gens that have been degraded in the lysosomes partly
simultaneously with the MHC maturation process. The
peptide:MHC class II complexes are subsequently trans-
ported to the cell surface for presentation.

In contrast to MHC class I, peptide affinity data for
MHC class II have been generated using a diverse set of
experimental assays by a large number of different
groups. About 80% of the quantitative data has been
produced using one single assay type, whereas 20 groups
using more than five different assay types produced the
remaining 20%. Less than 80% of the data were pro-
duced after 2006, and more than 15% of the data were
produced before 2001 [109]. Most binding data
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describing the specificity of MHC molecules are equili-
brium binding affinity values. Binding affinity might not
be the only relevant feature for the characterization of
epitopes. Binding stability might be equally relevant
because the avidity of the MHC peptide complex to
bind T cells clearly depends both on the equilibrium
binding constant and the stability of the complex. Com-
plementing the MHC binding data with peptide stability
measurements may, thus, lead to improved epitope pre-
dictions. As a result of the open ends of the MHC class
II binding cleft, peptides may bind in multiple registers.
Several conflicting studies have shown both positive and
negative effects of including such multiple binding regis-
ters into the prediction of MHC class II binding, and no
consensus has been reached in the field as to how big
the effect of multiple binding registers would be for an
accurate description of the binding specificity. Finally,
for naturally processed MHC ligands and CD4 epitopes,
factors other than peptide-MHC binding can influence
the peptide immunogenicity, including susceptibility to
proteolytic activity in the endosome/lysosome and pep-
tide/antigen abundance in the antigen-presenting cell.

MHC class Il binding predictions

Unlike MHC class I molecules, the binding cleft of
MHC class II molecules is open-ended [110], which
allows for the bound peptide to have significant protru-
sions at both ends. As a result MHC class II binding
peptides have a broader length distribution typically of
eleven to twenty residues [111]. However, the majority
of the binding interaction is mediated by a 9 amino acid
residue core sequence of the bound peptide. This com-
plicates binding predictions, as the identification of the
correct alignment of the binding core is a crucial part of
identifying the MHC class II binding motif [38,56].
Identifying this core is difficult, as the MHC class 1I
binding motifs have relatively weak and often degenerate
sequence signals. The majority of MHC class II binding
prediction methods are based on the assumption that
the peptide—MHC binding affinity is determined solely
from a nine amino acid binding core motif. An early
effort, TEPITOPE developed by Jirgen Hammer [112],
used this assumption. The data were obtained by phage
display and binding to a selected set of HLA-DRB1
molecules with a changing central 9mer core of the pre-
sented peptide. Position specific scoring matrices
(PSSM) were derived using statistical analysis of the
amino acids observed at each position in binding versus
non-binding peptide cores. Such PSSMs were generated
for a number of selected HLA-DRBI alleles and, using
structurally derived data, the anchor positions in the
peptides were associated with certain binding pockets in
the MHC molecule. Assuming that these binding
pockets were mutually independent, virtual PSSMs for
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HLA-DRBI alleles, for which no data was available, were
created by matching amino acid pocket residues of the
uncharacterized allele to pockets for the alleles with
characterized binding motif. For a long time, this
method was the best method for MHC class II binding
prediction. Since TEPITOPE was originally only made
available for PC use, the PSSMs were later derived from
publications and made publicly available as a part of the
web accessible class II predictor ProPred (http://www.
imtech.res.in/raghava/propred/) [113]. Even though
binding data became available for naturally processed
peptides, e.g., from SYFPEITHI [36] it proved difficult
to make prediction systems that significantly exceed the
accuracy of TEPITOPE/ProPred. One of the major
obstacles has been the identification of the 9mer binding
core within these generally longer peptides. Several
attempts have been made using more sophisticated
methods such as Gibbs sampling [38] or SVMs [114].
The assumption that binding can be predicted from a
9mer core alone is clearly an oversimplification as it is
known that peptide flanking residues (PFR) on both
sides of the binding core may contribute to the binding
affinity and stability of the peptide:MHC complex [115].
Some methods for MHC class II binding have attempted
to include PFRs indirectly, in terms of the peptide
length, in the affinity prediction [116]. Later, it was
demonstrated that including PFRs in MHC class II pre-
dictions does in fact improve the prediction accuracy
[117]. The method SMM-align (http://www.cbs.dtu.dk/
services/NetMHCII-1.1), which implements this
approach, has been shown to perform best by indepen-
dently conducted validations [56,118]. Most of the
methods for MHC class II binding predictions have
been trained and evaluated on very limited data sets
covering only a single or a few different MHC class II
alleles, making it very difficult to compare the different
performance values and establish generality of the meth-
ods. A recent large-scale comparison of prediction
methods for MHC class II binding [56] covered 14
HLA-DR (human MHC) and two mouse class II alleles.
Recently, an ANN-based method, NN-align (http://
www.cbs.dtu.dk/services/NetMHCII-2.2), has been pub-
lished [119] as an extension to the SMM-align method.
As depicted in Figure 3, the NN-align method uses the
current weights optimized in the previous training
round to select the optimal 9mer core and PFRs for
each of the peptides within the training set. The ANN
weights are then optimized on the basis of the errors
between the predicted binding affinity using the newly
defined core and PRFs. Now, the cores and PFRs are in
turn redefined based on the new weights and the itera-
tion is continued until the error ceases to decrease on
an external part of the training set not used to optimize
the weights. This method works significantly better than
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previously published methods, but awaits external inde-
pendent evaluation. Besides the previously described 14
HLA-DR alleles, the updated NetMHCII-2.2 method
includes prediction for six of the most common HLA-
DQ and DP alleles.

In a way the TEPITOPE approach was already an
early pan-specific predictor, but class II predictions have
now further benefited from the increasing number of
data points available, both regarding the number of pep-
tides and alleles. Pan-specific predictors have been
developed covering all HLA-DRB alleles [120] and as
the amount of data increases this trend will likely pro-
ceed to the other class II loci, DQ and DP.

Even though significant improvements have been
made on MHC class Il:peptide binding predictions, we
are still far from the accuracy obtained in class I predic-
tions. Regarding the usefulness of class II predictions,
the lower accuracy is to some extent compensated for
by the fact that longer peptides can be used (containing
a higher number of possible epitopes each) and that
class II MHCs are more promiscuous.

A number of epitope discovery experiments have been
performed were MHC class II binding predictions,
mainly TEPITOPE/ProPred, have been included as a fil-
tering step [109,121]. As another example of a recent
Thl epitope discovery effort where MHC class II bind-
ing predictions have been integrated is the work of S.A.
Mustafa [122]. Here, it was shown that MPT63, a major
secreted protein of Mycobacterium tuberculosis, induced
moderate Thl cell reactivity. Analysis of MPT63 hosted
peptides for binding to 51 HLA-DR alleles, using
ProPred, showed that MPT63 sequences could bind to
all the 51 alleles, and nine of the ten peptides of MPT63
were predicted to bind promiscuously.

Selection of an optimal epitope pool

Searching for potential T cell epitopes can be guided
using in silico screening procedures as explained above.
Genome wide screening procedures will often identify
thousands of potential epitope candidates caused by
genomic diversity of the pathogen and the HLA allelic
diversity of a given host population. Due to economic
and practical limitations, only a small set of epitope can-
didates can be handled in subsequent epitope validation
assays. Several methods have been published recently
aiming at identifying a peptide subset that will provide
optimal pathogen genomic and HLA coverage in a given
population [105,123-125]. The method by Fischer et al.
aims at designing mosaic protein with maximal 9-mer
peptide coverage of the pathogen genomic diversity. The
EpiSelect method described by Perez et al. [105] aims at
identifying sets of CTL epitopes with maximum cover-
age of the genomic variation of the pathogen. All avail-
able variants of an organism of interest are screened for
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Figure 3 Schematic overview of the NN-align algorithm. The artificial neural network (initially with assigned random weights) is used to
predict the binding affinity for a given peptide (right panel). The peptide (shown in light blue) is partitioned into overlapping 9mers, and the
binding affinity is predicted encoding the 9mer binding core combined with information about the peptide flanking residues (PFR), the length
of the PFR and the peptide length as described in the text. The binding affinity of the peptide is assigned from the highest scoring sub-peptide
(shown in red). Next, the ANN weight configuration is updated using back-propagation to minimize the squared error between the predicted
and measured binding affinities. This is repeated in a cycle for all peptides in the training data set for a given number of iterations.

peptides predicted to bind to a given allele or supertype
representative. The peptide-binder predicted to be pre-
sent in most of the variable pathogenic strains is
selected first. In repetitive selection rounds, new pre-
dicted binders are selected according to a scheme that
maximizes the overall coverage of the pathogenic strains
and leaves as few strains as possible uncovered. This
algorithm thus goes one step further than the method
by Fischer et al. [123], and includes the HLA restriction
in the peptide selection. In the published study, epitopes
were predicted for allele representatives of 9 supertypes
using NetCTL. For each of the supertypes, peptides
were consecutively selected by the EpiSelect scheme. Of
184 peptides tested against blood monocytes from 31
HIV patients infected with various HIV subtypes 114
(62%) were recognized by at least one study subject, and
45 were novel epitopes. Using the EpiSelect algorithm,
Perez et al. [105] were able to demonstrate how it is
possible to detect and evaluate both the magnitude and
breadth of epitope-specific CTL responses in a geneti-
cally diverse population infected with different HIV sub-
types using a very limited set of HLA class I supertype-
restricted epitopes, thus demonstrating the high power

of these methods. An alternative approach was taken in
the work by Toussaint et al. [125] where a set of pep-
tides with maximum likelihood of eliciting a broad and
potent immune response was selected from a user-
defined set of predicted or experimentally determined
epitopes covering different HLA alleles and pathogen
genomic variants.

Conclusions

Almost two decades ago, MHC peptide-binding data
were available for only a few human and mouse alleles.
Even from this scarce amount of data, it was found that
prediction of new potential epitopes could be performed
with a decent accuracy. The large polymorphism of the
MHC genomic region and especially of the MHC genes
themselves became more and more clear. This chal-
lenged the usefulness of identified epitopes as vaccines
since many epitopes would be needed to cover a reason-
able part of a given population, which would require
tremendous resources to be invested in the experimental
validation of the predicted epitopes. For more than a
decade, the supertype concept has been a highly valu-
able tool for limiting the number of epitopes needed in
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an epitope-based vaccine with broad population cover-
age. However, recent studies have demonstrated that
supertypes do provide a strong oversimplification of the
peptide binding diversity of the different MHC mole-
cules, and that different MHC alleles within a given
supertype often will restrict very different peptide reper-
toires [126,127]. To entail a detailed understanding of
which T cell epitopes can be restricted by a given host,
it has therefore become apparent that full HLA typing is
required in combination with the recent advances in
pan-specific MHC class I binding predictions. Several
large scale studies have demonstrated that based on
such detailed information, the vast majority of positive
T cell responses can be explained [128,129]. These stu-
dies also underline that supertype associations may lead
to poor or even wrong interpretations of the observed
immune correlates.

Despite the great advances in the accuracy and allelic
coverage of methods for prediction of peptide binding
to MHC molecules, a great proportion of recent papers
published on the subject of rational T cell epitope dis-
covery apply relatively ancient methods like BIMAS and
SYPHITHI for MHC class I and TEPITOPE/ProPred for
MHC class II [109]. This is surprising because many
benchmark studies have shown that state-of-the-art
data-driven methods significantly outperform these
older methods also when it comes to identification of
MHC ligands and T cell epitopes.

It is apparent that at present MHC:peptide binding
in silico models can significantly enhance the outcome
of epitope discovery experiments. However, there is no
doubt that human interpretation by experienced
immunologists is necessary in order to correctly inter-
pret and validate the outcome of such prediction sys-
tems. Today the most fruitful work seems to be done
in collaborations between experimentalists and
bioinformaticians.

The CTL epitope prediction algorithms are today at a
level of accuracy where they have already been proven
useful in high throughput and full genome based epi-
tope discovery. This gives hope that the methods them-
selves can be used as analytic tools for investigations of
systems biology nature e.g., host/pathogen interactions,
and simulate the development of the immune system
under specific stimuli. We do strongly believe that in
the near future the number of MHC class II binding
data will increase significantly, which will lead to the
development of new predictive methods and will
enhance the performance of existing methods. Further-
more, ongoing experiments indicate, that class II predic-
tions, even at the current level, can be of significant
help in Th epitope discovery efforts (Annika Karlsson,
personal communication).
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