Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, Hammer J: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices.
Nat Biotechnol 1999, 17:555–561.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lundegaard C, Worning P, Hvid CS, Lamberth K, Buus S, Brunak S, Lund O: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Bioinformatics 2004, 20:1388–1397.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lundegaard C, Lund O: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
BMC bioinformatics 2007, 8:238.
Article
PubMed
Google Scholar
Brusic V, Rudy G, Honeyman G, Hammer J, Harrison L: Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network.
Bioinformatics 1998, 14:121–130.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lund O: NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
BMC bioinformatics 2009, 10:296.
Article
PubMed
Google Scholar
Wan J, Liu W, Xu Q, Ren Y, Flower DR, Li T: SVRMHC prediction server for MHC-binding peptides.
BMC bioinformatics 2006, 7:463.
Article
PubMed
Google Scholar
Salomon J, Flower DR: Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores.
BMC bioinformatics 2006, 7:501.
Article
PubMed
Google Scholar
Cui J, Han LY, Lin HH, Zhang HL, Tang ZQ, Zheng CJ, Cao ZW, Chen YZ: Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties.
Molecular immunology 2007, 44:866–877.
Article
CAS
PubMed
Google Scholar
Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V, Kobayashi T: Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules.
J Biosci Bioeng 2002, 94:264–270.
CAS
PubMed
Google Scholar
Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, Mothe BR, Chisari FV, Watkins DI, Sette A: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications.
Immunogenetics 2005, 57:304–314.
Article
CAS
PubMed
Google Scholar
Murugan N, Dai Y: Prediction of MHC class II binding peptides based on an iterative learning model.
Immunome research 2005, 1:6.
Article
PubMed
Google Scholar
Chang ST, Ghosh D, Kirschner DE, Linderman JJ: Peptide length-based prediction of peptide-MHC class II binding.
Bioinformatics 2006, 22:2761–2767.
Article
CAS
PubMed
Google Scholar
Doytchinova IA, Flower DR: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction.
Bioinformatics 2003, 19:2263–2270.
Article
CAS
PubMed
Google Scholar
Rajapakse M, Schmidt B, Feng L, Brusic V: Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms.
BMC bioinformatics 2007, 8:459.
Article
PubMed
Google Scholar
Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs.
Immunogenetics 1999, 50:213–219.
Article
CAS
PubMed
Google Scholar
Hertz T, Yanover C: PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
BMC bioinformatics 2006,7(Suppl 1):S3.
Article
PubMed
Google Scholar
Zhang W, Liu J, Niu Y: Quantitative prediction of MHC-II binding affinity using particle swarm optimization.
Artificial intelligence in medicine 2010, 50:127–132.
Article
PubMed
Google Scholar
Dimitrov I, Garnev P, Flower DR, Doytchinova I: EpiTOP-a proteochemometric tool for MHC class II binding prediction.
Bioinformatics 2010, 26:2066–2068.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lund O, Buus S, Lundegaard C: MHC Class II epitope predictive algorithms.
Immunology 2010, 130:319–328.
Article
CAS
PubMed
Google Scholar
Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M: NetMHCpan, a method for MHC class I binding prediction beyond humans.
Immunogenetics 2009, 61:1–13.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Roder G, Peters B, Sette A, Lund O, Buus S: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence.
PLoS ONE 2007, 2:e796.
Article
PubMed
Google Scholar
Zhang H, Lund O, Nielsen M: The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding.
Bioinformatics 2009, 25:1293–1299.
Article
CAS
PubMed
Google Scholar
Jacob L, Vert JP: Efficient peptide-MHC-I binding prediction for alleles with few known binders.
Bioinformatics 2008, 24:358–366.
Article
CAS
PubMed
Google Scholar
Jojic N, Reyes-Gomez M, Heckerman D, Kadie C, Schueler-Furman O: Learning MHC I--peptide binding.
Bioinformatics 2006, 22:e227–235.
Article
CAS
PubMed
Google Scholar
Zaitlen N, Reyes-Gomez M, Heckerman D, Jojic N: Shift-invariant adaptive double threading: learning MHC II-peptide binding.
J Comput Biol 2008, 15:927–942.
Article
CAS
PubMed
Google Scholar
Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V: MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides.
Nucleic acids research 2005, 33:W172–179.
Article
CAS
PubMed
Google Scholar
Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V: Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research.
BMC bioinformatics 2008,9(Suppl 12):S22.
Article
PubMed
Google Scholar
Zhang H, Lundegaard C, Nielsen M: Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods.
Bioinformatics 2009, 25:83–89.
Article
PubMed
Google Scholar
Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O: Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan.
PLoS Comput Biol 2008, 4:e1000107.
Article
PubMed
Google Scholar
Justesen S, Harndahl M, Lamberth K, Nielsen LL, Buus S: Functional recombinant MHC class II molecules and high-throughput peptide-binding assays.
Immunome research 2009, 5:2.
Article
PubMed
Google Scholar
Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B: The immune epitope database 2.0.
Nucleic acids research 2010, 38:D854–862.
Article
CAS
PubMed
Google Scholar
Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations.
Protein Sci 2003, 12:1007–1017.
Article
CAS
PubMed
Google Scholar