Vivona S, Gardy JL, Ramachandran S, Brinkman FSL, Raghava GPS, Flower DR, Filippini F: Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol. 2008, 26: 190-200. 10.1016/j.tibtech.2007.12.006.
CAS
PubMed
Google Scholar
Flower D: . Bioinformatics for Vaccinology. 2008, Wiley, 1
Google Scholar
Flower DR, Davies MN, Ranganathan S: . Bioinformatics for Immunomics. 2010, Springer, 1
Google Scholar
Lambert PH, Hawkridge T, Hanekom WA: New vaccines against tuberculosis. Clin Chest Med. 2009, 30: 811-826. 10.1016/j.ccm.2009.08.014. x
PubMed
Google Scholar
Vivona S, Gardy JL, Ramachandran S, Brinkman FS, Raghava GP, Flower DR, Filippini F: Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol. 2008, 26: 190-200. 10.1016/j.tibtech.2007.12.006.
CAS
PubMed
Google Scholar
Davies MN, Flower DR: Harnessing bioinformatics to discover new vaccines. Drug Discov Today. 2007, 12: 389-395. 10.1016/j.drudis.2007.03.010.
CAS
PubMed
Google Scholar
Bambini S, Rappuoli R: The use of genomics in microbial vaccine development. Drug Discov Today. 2009, 14: 252-260. 10.1016/j.drudis.2008.12.007.
CAS
PubMed
Google Scholar
Serruto D, Rappuoli R: Post-genomic vaccine development. Febs Lett. 2006, 580: 2985-2992. 10.1016/j.febslet.2006.04.084.
CAS
PubMed
Google Scholar
Mora M, Donati C, Medini D, Covacci A, Rappuoli R: Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Curr Opin Microbiol. 2006, 9: 532-536. 10.1016/j.mib.2006.07.003.
CAS
PubMed
Google Scholar
Serruto D, Adu-Bobie J, Capecchi B, Rappuoli R, Pizza M, Masignani V: Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. J Biotechnol. 2004, 113: 15-32. 10.1016/j.jbiotec.2004.03.024.
CAS
PubMed
Google Scholar
Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, et al: Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science. 2000, 287: 1809-1815. 10.1126/science.287.5459.1809.
CAS
PubMed
Google Scholar
Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, et al: Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science. 2000, 287: 1816-1820. 10.1126/science.287.5459.1816.
CAS
PubMed
Google Scholar
Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH, Barash SC, Rosen CA, Masure HR, Tuomanen E, et al: Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun. 2001, 69: 1593-1598. 10.1128/IAI.69.3.1593-1598.2001.
PubMed Central
CAS
PubMed
Google Scholar
Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, et al: Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science. 2005, 309: 148-150. 10.1126/science.1109869.
PubMed Central
CAS
PubMed
Google Scholar
Ross BC, Czajkowski L, Hocking D, Margetts M, Webb E, Rothel L, Patterson M, Agius C, Camuglia S, Reynolds E, et al: Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine. 2001, 19: 4135-4142. 10.1016/S0264-410X(01)00173-6.
CAS
PubMed
Google Scholar
Lafuente EM, Reche PA: Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr Pharm Des. 2009, 15: 3209-3220. 10.2174/138161209789105162.
CAS
PubMed
Google Scholar
Gowthaman U, Agrewala JN: In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J Proteome Res. 2008, 7: 154-163. 10.1021/pr070527b.
CAS
PubMed
Google Scholar
El-Manzalawy Y, Dobbs D, Honavar V: On evaluating MHC-II binding peptide prediction methods. Plos One. 2008, 3: e3268-10.1371/journal.pone.0003268.
PubMed Central
PubMed
Google Scholar
Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V: Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. Bmc Bioinformatics. 2008, 9 (Suppl 12): S22-10.1186/1471-2105-9-S12-S22.
PubMed Central
PubMed
Google Scholar
Knapp B, Omasits U, Frantal S, Schreiner W: A critical cross-validation of high throughput structural binding prediction methods for pMHC. J Comput Aided Mol Des. 2009, 23: 301-307. 10.1007/s10822-009-9259-2.
CAS
PubMed
Google Scholar
Zhang H, Wang P, Papangelopoulos N, Xu Y, Sette A, Bourne PE, Lund O, Ponomarenko J, Nielsen M, Peters B: Limitations of Ab initio predictions of peptide binding to MHC class II molecules. Plos One. 2010, 5: e9272-10.1371/journal.pone.0009272.
PubMed Central
PubMed
Google Scholar
Ponomarenko JV, Bourne PE: Antibody-protein interactions: benchmark datasets and prediction tools evaluation. Bmc Struct Biol. 2007, 7: 64-10.1186/1472-6807-7-64.
PubMed Central
PubMed
Google Scholar
Blythe MJ, Flower DR: Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci. 2005, 14: 246-248. 10.1110/ps.041059505.
PubMed Central
CAS
PubMed
Google Scholar
Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B: The immune epitope database 2.0. Nucleic Acids Res. 2010, 38: D854-862. 10.1093/nar/gkp1004.
PubMed Central
CAS
PubMed
Google Scholar
Vita R, Peters B, Sette A: The curation guidelines of the immune epitope database and analysis resource. Cytometry A. 2008, 73: 1066-1070.
PubMed Central
CAS
PubMed
Google Scholar
Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, Bui HH, Buus S, Frankild S, Greenbaum J, et al: Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008, 36: W513-518. 10.1093/nar/gkn254.
PubMed Central
CAS
PubMed
Google Scholar
Sette A: The immune epitope database and analysis resource: from vision to blueprint. Genome Inform. 2004, 15: 299-
PubMed
Google Scholar
Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, et al: The design and implementation of the immune epitope database and analysis resource. Immunogenetics. 2005, 57: 326-336. 10.1007/s00251-005-0803-5.
CAS
PubMed
Google Scholar
Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, et al: The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol. 2005, 3: e91-10.1371/journal.pbio.0030091.
PubMed Central
PubMed
Google Scholar
Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, et al: T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nat Immunol. 2005, 6: 1114-1122. 10.1038/ni1257.
CAS
PubMed
Google Scholar
Tynan FE, Borg NA, Miles JJ, Beddoe T, El-Hassen D, Silins SL, van Zuylen WJ, Purcell AW, Kjer-Nielsen L, McCluskey J, et al: High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance. J Biol Chem. 2005, 280: 23900-23909. 10.1074/jbc.M503060200.
CAS
PubMed
Google Scholar
Burrows SR, Rossjohn J, McCluskey J: Have we cut ourselves too short in mapping CTL epitopes?. Trends Immunol. 2006, 27: 11-16. 10.1016/j.it.2005.11.001.
CAS
PubMed
Google Scholar
Ebert LM, Liu YC, Clements CS, Robson NC, Jackson HM, Markby JL, Dimopoulos N, Tan BS, Luescher IF, Davis ID, et al: A long, naturally presented immunodominant epitope from NY-ESO-1 tumor antigen: implications for cancer vaccine design. Cancer Res. 2009, 69: 1046-1054. 10.1158/0008-5472.CAN-08-2926.
CAS
PubMed
Google Scholar
Halling-Brown M, Shaban R, Frampton D, Sansom CE, Davies M, Flower D, Duffield M, Titball RW, Brusic V, Moss DS: Proteins accessible to immune surveillance show significant T-cell epitope depletion: Implications for vaccine design. Mol Immunol. 2009, 46: 2699-2705. 10.1016/j.molimm.2009.05.027.
CAS
PubMed
Google Scholar
Halling-Brown M, Sansom CE, Davies M, Titball RW, Moss DS: Are bacterial vaccine antigens T-cell epitope depleted?. Trends Immunol. 2008, 29: 374-379. 10.1016/j.it.2008.06.001.
CAS
PubMed
Google Scholar
Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, Kahn D: The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 2005, 33: D212-215. 10.1093/nar/gki034.
PubMed Central
CAS
PubMed
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al: The Pfam protein families database. Nucleic Acids Res. 2010, 38: D211-222. 10.1093/nar/gkp985.
PubMed Central
CAS
PubMed
Google Scholar
Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N: PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 2010, 38: D161-166. 10.1093/nar/gkp885.
PubMed Central
CAS
PubMed
Google Scholar
Radisky DC, Stallings-Mann M, Hirai Y, Bissell MJ: Single proteins might have dual but related functions in intracellular and extracellular microenvironments. Nat Rev Mol Cell Biol. 2009, 10: 228-234. 10.1038/nrm2633.
PubMed Central
CAS
PubMed
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007, 2: 953-971. 10.1038/nprot.2007.131.
CAS
PubMed
Google Scholar
Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004, 340: 783-795. 10.1016/j.jmb.2004.05.028.
PubMed
Google Scholar
Choo KH, Tan TW, Ranganathan S: A comprehensive assessment of N-terminal signal peptides prediction methods. Bmc Bioinformatics. 2009, 10 (Suppl 15): S2-10.1186/1471-2105-10-S15-S2.
PubMed Central
PubMed
Google Scholar
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K: WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007, 35: W585-587. 10.1093/nar/gkm259.
PubMed Central
PubMed
Google Scholar
Chen Y, Yu P, Luo J, Jiang Y: Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome. 2003, 14: 859-865. 10.1007/s00335-003-2296-6.
CAS
PubMed
Google Scholar
Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, Simon I, Hua S, deFays K, Lambert C, Nakai K, Brinkman FS: PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res. 2003, 31: 3613-3617. 10.1093/nar/gkg602.
PubMed Central
CAS
PubMed
Google Scholar
Nakai K, Horton P: PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999, 24: 34-36. 10.1016/S0968-0004(98)01336-X.
CAS
PubMed
Google Scholar
Bulashevska A, Eils R: Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains. Bmc Bioinformatics. 2006, 7: 298-10.1186/1471-2105-7-298.
PubMed Central
PubMed
Google Scholar
Chen H, Huang N, Sun Z: SubLoc: a server/client suite for protein subcellular location based on SOAP. Bioinformatics. 2006, 22: 376-377. 10.1093/bioinformatics/bti822.
PubMed
Google Scholar
Shen HB, Chou KC: Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng Des Sel. 2007, 20: 39-46. 10.1093/protein/gzl053.
CAS
PubMed
Google Scholar
Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S: Prediction of twin-arginine signal peptides. Bmc Bioinformatics. 2005, 6: 167-10.1186/1471-2105-6-167.
PubMed Central
PubMed
Google Scholar
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A: Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003, 12: 1652-1662. 10.1110/ps.0303703.
PubMed Central
CAS
PubMed
Google Scholar
Kall L, Krogh A, Sonnhammer EL: Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res. 2007, 35: W429-432. 10.1093/nar/gkm256.
PubMed Central
PubMed
Google Scholar
Restrepo-Montoya D, Vizcaino C, Nino LF, Ocampo M, Patarroyo ME, Patarroyo MA: Validating subcellular localization prediction tools with mycobacterial proteins. Bmc Bioinformatics. 2009, 10: 134-10.1186/1471-2105-10-134.
PubMed Central
PubMed
Google Scholar
Taylor PD, Attwood TK, Flower DR: Toward bacterial protein sub-cellular location prediction: single-class discrimminant models for all gram- and gram+ compartments. Bioinformation. 2006, 1: 276-280.
PubMed Central
PubMed
Google Scholar
Taylor PD, Attwood TK, Flower DR: Multi-class subcellular location prediction for bacterial proteins. Bioinformation. 2006, 1: 260-264.
PubMed Central
PubMed
Google Scholar
Taylor PD, Toseland CP, Attwood TK, Flower DR: Alpha helical trans-membrane proteins: Enhanced prediction using a Bayesian approach. Bioinformation. 2006, 1: 234-236.
PubMed Central
PubMed
Google Scholar
Taylor PD, Toseland CP, Attwood TK, Flower DR: Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach. Bioinformation. 2006, 1: 231-233.
PubMed Central
PubMed
Google Scholar
Taylor PD, Toseland CP, Attwood TK, Flower DR: A predictor of membrane class: Discriminating alpha-helical and beta-barrel membrane proteins from non-membranous proteins. Bioinformation. 2006, 1: 208-213.
PubMed Central
PubMed
Google Scholar
Taylor PD, Toseland CP, Attwood TK, Flower DR: TATPred: a Bayesian method for the identification of twin arginine translocation pathway signal sequences. Bioinformation. 2006, 1: 184-187.
PubMed Central
PubMed
Google Scholar
Taylor PD, Toseland CP, Attwood TK, Flower DR: LIPPRED: A web server for accurate prediction of lipoprotein signal sequences and cleavage sites. Bioinformation. 2006, 1: 176-179.
PubMed Central
PubMed
Google Scholar
Taylor PD, Attwood TK, Flower DR: Combining algorithms to predict bacterial protein sub-cellular location: Parallel versus concurrent implementations. Bioinformation. 2006, 1: 285-289.
PubMed Central
PubMed
Google Scholar
Guo T, Hua S, Ji X, Sun Z: DBSubLoc: database of protein subcellular localization. Nucleic Acids Res. 2004, 32: D122-124. 10.1093/nar/gkh109.
PubMed Central
CAS
PubMed
Google Scholar
Scott MS, Oomen R, Thomas DY, Hallett MT: Predicting the subcellular localization of viral proteins within a mammalian host cell. Virol J. 2006, 3: 24-10.1186/1743-422X-3-24.
PubMed Central
CAS
PubMed
Google Scholar
Shen HB, Chou KC: Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers. 2007, 85: 233-240. 10.1002/bip.20640.
CAS
PubMed
Google Scholar
Schuler MM, Nastke MD, Stevanovikc S: SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol. 2007, 409: 75-93. full_text.
CAS
PubMed
Google Scholar
Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999, 50: 213-219. 10.1007/s002510050595.
CAS
PubMed
Google Scholar
Kuiken C, Korber B, Shafer RW: HIV sequence databases. AIDS Rev. 2003, 5: 52-61.
PubMed Central
PubMed
Google Scholar
Lata S, Bhasin M, Raghava GP: MHCBN 4.0: A database of MHC/TAP binding peptides and T-cell epitopes. BMC Res Notes. 2009, 2: 61-10.1186/1756-0500-2-61.
PubMed Central
PubMed
Google Scholar
Bhasin M, Singh H, Raghava GP: MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics. 2003, 19: 665-666. 10.1093/bioinformatics/btg055.
CAS
PubMed
Google Scholar
Reche PA, Zhang H, Glutting JP, Reinherz EL: EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics. 2005, 21: 2140-2141. 10.1093/bioinformatics/bti269.
CAS
PubMed
Google Scholar
Toseland CP, Clayton DJ, McSparron H, Hemsley SL, Blythe MJ, Paine K, Doytchinova IA, Guan P, Hattotuwagama CK, Flower DR: AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 2005, 1: 4-10.1186/1745-7580-1-4.
PubMed Central
PubMed
Google Scholar
McSparron H, Blythe MJ, Zygouri C, Doytchinova IA, Flower DR: JenPep: a novel computational information resource for immunobiology and vaccinology. J Chem Inf Comput Sci. 2003, 43: 1276-1287.
CAS
PubMed
Google Scholar
Blythe MJ, Doytchinova IA, Flower DR: JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics. 2002, 18: 434-439. 10.1093/bioinformatics/18.3.434.
CAS
PubMed
Google Scholar
Wassenaar TM, Gaastra W: Bacterial virulence: can we draw the line?. FEMS Microbiol Lett. 2001, 201: 1-7. 10.1111/j.1574-6968.2001.tb10724.x.
CAS
PubMed
Google Scholar
Yang J, Chen L, Sun L, Yu J, Jin Q: VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res. 2008, 36: D539-542. 10.1093/nar/gkm951.
PubMed Central
CAS
PubMed
Google Scholar
Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q: VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33: D325-328. 10.1093/nar/gki008.
PubMed Central
CAS
PubMed
Google Scholar
Tongchusak S, Chaiyaroj SC, Veeramani A, Koh JLY, Brusic V: CandiVF - Candida albicans virulence factor database. Int J Pept Res Ther. 2005, 11: 271-277. 10.1007/s10989-005-9268-5.
CAS
Google Scholar
Winnenburg R, Baldwin TK, Urban M, Rawlings C, Kohler J, Hammond-Kosack KE: PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 2006, 34: D459-D464. 10.1093/nar/gkj047.
PubMed Central
CAS
PubMed
Google Scholar
Ansari HR, Flower DR, Raghava GPS: AntigenDB: an immunoinformatics database of pathogen antigens. Nucleic Acids Res. 2010, 38: D847-D853. 10.1093/nar/gkp830.
PubMed Central
CAS
PubMed
Google Scholar
Flower DR: The lipocalin protein family: Structure and function. Biochem J. 1996, 318: 1-14.
PubMed Central
CAS
PubMed
Google Scholar
Flower DR, North ACT, Attwood TK: Structure and Sequence Relationships in the Lipocalins and Related Proteins. Protein Sci. 1993, 2: 753-761. 10.1002/pro.5560020507.
PubMed Central
CAS
PubMed
Google Scholar
Flower DR, North AC, Sansom CE: The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta. 2000, 1482: 9-24.
CAS
PubMed
Google Scholar
Kanduc D: Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther. 2009, 9: 45-53. 10.1517/14712590802614041.
CAS
PubMed
Google Scholar
Kanduc D: Peptimmunology: immunogenic peptides and sequence redundancy. Curr Drug Discov Technol. 2005, 2: 239-244. 10.2174/157016305775202946.
CAS
PubMed
Google Scholar
Singh NJ, Schwartz RH: Primer: mechanisms of immunologic tolerance. Nat Clin Pract Rheumatol. 2006, 2: 44-52. 10.1038/ncprheum0049.
CAS
PubMed
Google Scholar
Miao CH: Recent advances in immune modulation. Curr Gene Ther. 2007, 7: 391-402. 10.2174/156652307782151524.
CAS
PubMed
Google Scholar
Barron L, Knoechel B, Lohr J, Abbas AK: Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. J Immunol. 2008, 180: 2762-2766.
CAS
PubMed
Google Scholar
Yoon SH, Hur CG, Kang HY, Kim YH, Oh TK, Kim JF: A computational approach for identifying pathogenicity islands in prokaryotic genomes. Bmc Bioinformatics. 2005, 6: 184-10.1186/1471-2105-6-184.
PubMed Central
PubMed
Google Scholar
Guy L: Identification and characterization of pathogenicity and other genomic islands using base composition analyses. Future Microbiol. 2006, 1: 309-316. 10.2217/17460913.1.3.309.
CAS
PubMed
Google Scholar
Wolff K, Stern A: Identification and characterization of specific sequences encoding pathogenicity associated proteins in the genome of commensal Neisseria species. FEMS Microbiol Lett. 1995, 125: 255-263. 10.1111/j.1574-6968.1995.tb07366.x.
CAS
PubMed
Google Scholar
Wang G, Zhou F, Olman V, Li F, Xu Y: Prediction of pathogenicity islands in enterohemorrhagic Escherichia coli O157:H7 using genomic barcodes. Febs Lett. 2010, 584: 194-198. 10.1016/j.febslet.2009.11.067.
CAS
PubMed
Google Scholar
Hackenberg M, Previti C, Luque-Escamilla PL, Carpena P, Martinez-Aroza J, Oliver JL: CpGcluster: a distance-based algorithm for CpG-island detection. Bmc Bioinformatics. 2006, 7: 446-10.1186/1471-2105-7-446.
PubMed Central
PubMed
Google Scholar
Sujuan Y, Asaithambi A, Liu Y: CpGIF: an algorithm for the identification of CpG islands. Bioinformation. 2008, 2: 335-338.
PubMed Central
PubMed
Google Scholar
Hutter B, Paulsen M, Helms V: Identifying CpG Islands by Different Computational Techniques. OMICS. 2009
Google Scholar
Su J, Zhang Y, Lv J, Liu H, Tang X, Wang F, Qi Y, Feng Y, Li X: CpG_MI: a novel approach for identifying functional CpG islands in mammalian genomes. Nucleic Acids Res. 2010, 38: e6-10.1093/nar/gkp882.
PubMed Central
PubMed
Google Scholar
Flower DR, North AC, Attwood TK: Structure and sequence relationships in the lipocalins and related proteins. Protein Sci. 1993, 2: 753-761. 10.1002/pro.5560020507.
PubMed Central
CAS
PubMed
Google Scholar
Flower DR: Structural Relationship of Streptavidin to the Calycin Protein Superfamily. Febs Lett. 1993, 333: 99-102. 10.1016/0014-5793(93)80382-5.
CAS
PubMed
Google Scholar
Doytchinova IA, Flower DR: VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. Bmc Bioinformatics. 2007, 8: 10.1186/1471-2105-8-4.
Google Scholar
Doytchinova IA, Flower DR: Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine. 2007, 25: 856-866. 10.1016/j.vaccine.2006.09.032.
CAS
PubMed
Google Scholar
Wold S, Jonsson J, Sjostrom M, Sandberg M, Rannar S: DNA and Peptide Sequences and Chemical Processes Multivariately Modeled by Principal Component Analysis and Partial Least-Squares Projections to Latent Structures. Anal Chim Acta. 1993, 277: 239-253. 10.1016/0003-2670(93)80437-P.
CAS
Google Scholar
Wold S, Eriksson L, Hellberg S, Jonsson J, Sjostrom M, Skagerberg B, Wikstrom C: Principal Property-Values for 6 Nonnatural Amino-Acids and Their Application to a Structure Activity Relationship for Oxytocin Peptide Analogs. Can J Chem. 1987, 65: 1814-1820. 10.1139/v87-305.
CAS
Google Scholar
Dimitrov I, Garnev P, Flower DR, Doytchinova I: Peptide binding to the HLA-DRB1 supertype: a proteochemometrics analysis. Eur J Med Chem. 2010, 45: 236-243. 10.1016/j.ejmech.2009.09.049.
CAS
PubMed
Google Scholar
Kontijevskis A, Petrovska R, Yahorava S, Komorowski J, Wikberg JE: Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates. Bioorg Med Chem. 2009, 17: 5229-5237. 10.1016/j.bmc.2009.05.045.
CAS
PubMed
Google Scholar
Prusis P, Lapins M, Yahorava S, Petrovska R, Niyomrattanakit P, Katzenmeier G, Wikberg JE: Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorg Med Chem. 2008, 16: 9369-9377. 10.1016/j.bmc.2008.08.081.
CAS
PubMed
Google Scholar
Strombergsson H, Kryshtafovych A, Prusis P, Fidelis K, Wikberg JE, Komorowski J, Hvidsten TR: Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures. Proteins. 2006, 65: 568-579. 10.1002/prot.21163.
PubMed
Google Scholar
Strombergsson H, Prusis P, Midelfart H, Lapinsh M, Wikberg JE, Komorowski J: Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions. Proteins. 2006, 63: 24-34. 10.1002/prot.20777.
PubMed
Google Scholar
Lapinsh M, Prusis P, Uhlen S, Wikberg JE: Improved approach for proteochemometrics modeling: application to organic compound--amine G protein-coupled receptor interactions. Bioinformatics. 2005, 21: 4289-4296. 10.1093/bioinformatics/bti703.
CAS
PubMed
Google Scholar
Wikberg JE, Mutulis F, Mutule I, Veiksina S, Lapinsh M, Petrovska R, Prusis P: Melanocortin receptors: ligands and proteochemometrics modeling. Ann N Y Acad Sci. 2003, 994: 21-26. 10.1111/j.1749-6632.2003.tb03158.x.
CAS
PubMed
Google Scholar
Lapinsh M, Prusis P, Lundstedt T, Wikberg JE: Proteochemometrics modeling of the interaction of amine G-protein coupled receptors with a diverse set of ligands. Mol Pharmacol. 2002, 61: 1465-1475. 10.1124/mol.61.6.1465.
CAS
PubMed
Google Scholar
Hellberg S, Sjostrom M, Skagerberg B, Wold S: Peptide Quantitative Structure-Activity-Relationships, a Multivariate Approach. J Med Chem. 1987, 30: 1126-1135. 10.1021/jm00390a003.
CAS
PubMed
Google Scholar
Jonsson J, Eriksson L, Hellberg S, Sjostrom M, Wold S: Multivariate Parametrization of 55 Coded and Non-Coded Amino-Acids. Quant Struct-Act Rel. 1989, 8: 204-209. 10.1002/qsar.19890080303.
CAS
Google Scholar
Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998, 41: 2481-2491. 10.1021/jm9700575.
CAS
PubMed
Google Scholar
Doytchinova IA, Flower DR: Bioinformatic Approach for Identifying Parasite and Fungal Candidate Subunit Vaccines. The Open Vaccine Journal. 2008, 1: 4-10.2174/1875035400801010022.
Google Scholar
Vivona S, Bernante F, Filippini F: NERVE: new enhanced reverse vaccinology environment. BMC Biotechnol. 2006, 6: 35-10.1186/1472-6750-6-35.
PubMed Central
PubMed
Google Scholar
Harish N, Gupta R, Agarwal P, Scaria V, Pillai B: DyNAVacS: an integrative tool for optimized DNA vaccine design. Nucleic Acids Res. 2006, 34: W264-266. 10.1093/nar/gkl242.
PubMed Central
CAS
PubMed
Google Scholar
Fell DA: Enzymes, metabolites and fluxes. J Exp Bot. 2005, 56: 267-272. 10.1093/jxb/eri011.
CAS
PubMed
Google Scholar