Mishra S, Sinha S: Immunoinformatics and modeling perspective of T cell epitope-based cancer immunotherapy: a holistic picture. J Biomol Struct Dyn. 2009, 27 (3): 293-306.
CAS
PubMed
Google Scholar
Tong JC, Ren EC: Immunoinformatics: Current trends and future directions. Drug Discov Today. 2009, 14 (13-14): 684-9. 10.1016/j.drudis.2009.04.001.
CAS
PubMed
Google Scholar
Flower DR: Immunoinformatics and the in silico prediction of immunogenicity. An introduction. Methods Mol Biol. 2007, 409: 1-15. full_text.
CAS
PubMed
Google Scholar
Evans MC: Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Devel. 2008, 11 (2): 233-41.
CAS
PubMed
Google Scholar
Flower DR: Towards in silico prediction of immunogenic epitopes. Trends Immunol. 2003, 24 (12): 667-74. 10.1016/j.it.2003.10.006.
CAS
PubMed
Google Scholar
Korber B, LaBute M, Yusim K: Immunoinformatics comes of age. PLoS Comput Biol. 2006, 2 (6): e71-10.1371/journal.pcbi.0020071.
PubMed Central
PubMed
Google Scholar
Flower D: Bioinformatics for Vaccinology. 2008, Wiley, 1
Google Scholar
Davies MN, Flower DR: Harnessing bioinformatics to discover new vaccines. Drug Discov Today. 2007, 12 (9-10): 389-95. 10.1016/j.drudis.2007.03.010.
CAS
PubMed
Google Scholar
De Groot AS: Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today. 2006, 11 (5-6): 203-9. 10.1016/S1359-6446(05)03720-7.
CAS
PubMed
Google Scholar
De Groot AS, Berzofsky JA: From genome to vaccine--new immunoinformatics tools for vaccine design. Methods. 2004, 34 (4): 425-8. 10.1016/j.ymeth.2004.06.004.
CAS
PubMed
Google Scholar
Serruto D, et al: Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine. 2009, 27 (25-26): 3245-50. 10.1016/j.vaccine.2009.01.072.
CAS
PubMed
Google Scholar
Rinaudo CD, et al: Vaccinology in the genome era. J Clin Invest. 2009, 119 (9): 2515-25. 10.1172/JCI38330.
PubMed Central
CAS
PubMed
Google Scholar
Moriel DG, et al: Genome-based vaccine development: a short cut for the future. Adv Exp Med Biol. 2009, 655: 81-9. full_text.
CAS
PubMed
Google Scholar
Bambini S, Rappuoli R: The use of genomics in microbial vaccine development. Drug Discov Today. 2009, 14 (5-6): 252-60. 10.1016/j.drudis.2008.12.007.
CAS
PubMed
Google Scholar
Barocchi MA, Censini S, Rappuoli R: Vaccines in the era of genomics: the pneumococcal challenge. Vaccine. 2007, 25 (16): 2963-73. 10.1016/j.vaccine.2007.01.065.
CAS
PubMed
Google Scholar
Mora M, et al: Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Curr Opin Microbiol. 2006, 9 (5): 532-6. 10.1016/j.mib.2006.07.003.
CAS
PubMed
Google Scholar
Serruto D, Rappuoli R: Post-genomic vaccine development. FEBS Lett. 2006, 580 (12): 2985-92. 10.1016/j.febslet.2006.04.084.
CAS
PubMed
Google Scholar
Deavin AJ, Auton TR, Greaney PJ: Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens. Mol Immunol. 1996, 33 (2): 145-55. 10.1016/0161-5890(95)00120-4.
CAS
PubMed
Google Scholar
Peters B, et al: A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol. 2006, 2 (6): e65-10.1371/journal.pcbi.0020065.
PubMed Central
PubMed
Google Scholar
Lin HH, et al: Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol. 2008, 9: 8-10.1186/1471-2172-9-8.
PubMed Central
PubMed
Google Scholar
El-Manzalawy Y, Dobbs D, Honavar V: On evaluating MHC-II binding peptide prediction methods. PLoS One. 2008, 3 (9): e3268-10.1371/journal.pone.0003268.
PubMed Central
PubMed
Google Scholar
Lin HH, et al: Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics. 2008, 9 (Suppl 12): S22-10.1186/1471-2105-9-S12-S22.
PubMed Central
PubMed
Google Scholar
Gowthaman U, Agrewala JN: In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J Proteome Res. 2008, 7 (1): 154-63. 10.1021/pr070527b.
CAS
PubMed
Google Scholar
Ponomarenko JV, Bourne PE: Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol. 2007, 7: 64-10.1186/1472-6807-7-64.
PubMed Central
PubMed
Google Scholar
Blythe MJ, Flower DR: Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci. 2005, 14 (1): 246-8. 10.1110/ps.041059505.
PubMed Central
CAS
PubMed
Google Scholar
Leach AR: Molecular modelling : principles and applications. 2001, Harlow: Prentice Hall, xxiv-744. 2
Google Scholar
Allinger NL, Yuh YH, Lii JH: Molecular Mechanics - the Mm3 Force-Field for Hydrocarbons .1. Journal of the American Chemical Society. 1989, 111 (23): 8551-8566. 10.1021/ja00205a001.
CAS
Google Scholar
Christen M, et al: The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem. 2005, 26 (16): 1719-51. 10.1002/jcc.20303.
CAS
PubMed
Google Scholar
Yang LJ, et al: New-generation amber united-atom force field. Journal of Physical Chemistry B. 2006, 110 (26): 13166-13176. 10.1021/jp060163v.
CAS
Google Scholar
Wang JM, et al: Development and testing of a general amber force field. Journal of Computational Chemistry. 2004, 25 (9): 1157-1174. 10.1002/jcc.20035.
CAS
PubMed
Google Scholar
Weiner PK, Kollman PA: Amber - Assisted Model-Building with Energy Refinement - a General Program for Modeling Molecules and Their Interactions. Journal of Computational Chemistry. 1981, 2 (3): 287-303. 10.1002/jcc.540020311.
CAS
Google Scholar
Brooks BR, et al: CHARMM: the biomolecular simulation program. J Comput Chem. 2009, 30 (10): 1545-614. 10.1002/jcc.21287.
PubMed Central
CAS
PubMed
Google Scholar
Vanommeslaeghe K, et al: CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010, 31 (4): 671-90.
PubMed Central
CAS
PubMed
Google Scholar
Guvench O, MacKerell AD: Computational evaluation of protein-small molecule binding. Curr Opin Struct Biol. 2009, 19 (1): 56-61. 10.1016/j.sbi.2008.11.009.
PubMed Central
CAS
PubMed
Google Scholar
Mark AE, et al: Rapid non-empirical approaches for estimating relative binding free energies. Acta Biochim Pol. 1995, 42 (4): 525-35.
CAS
PubMed
Google Scholar
Fogolari F, Brigo A, Molinari H: Protocol for MM/PBSA molecular dynamics simulations of proteins. Biophysical Journal. 2003, 85 (1): 159-166. 10.1016/S0006-3495(03)74462-2.
PubMed Central
CAS
PubMed
Google Scholar
Genheden S, Ryde U: How to obtain statistically converged MM/GBSA results. J Comput Chem. 2010, 31 (4): 837-46.
CAS
PubMed
Google Scholar
Ma J: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure. 2005, 13 (3): 373-80. 10.1016/j.str.2005.02.002.
CAS
PubMed
Google Scholar
Liwo A, et al: Computational techniques for efficient conformational sampling of proteins. Curr Opin Struct Biol. 2008, 18 (2): 134-9.
PubMed Central
CAS
PubMed
Google Scholar
Yaneva R, et al: Peptide binding to MHC class I and II proteins: new avenues from new methods. Mol Immunol. 2010, 47 (4): 649-57. 10.1016/j.molimm.2009.10.008.
CAS
PubMed
Google Scholar
Zhang C, Anderson A, DeLisi C: Structural principles that govern the peptide-binding motifs of class I MHC molecules. J Mol Biol. 1998, 281 (5): 929-47. 10.1006/jmbi.1998.1982.
CAS
PubMed
Google Scholar
Zhang C, Cornette JL, Delisi C: Consistency in structural energetics of protein folding and peptide recognition. Protein Sci. 1997, 6 (5): 1057-64. 10.1002/pro.5560060512.
PubMed Central
CAS
PubMed
Google Scholar
Vasmatzis G, et al: Computational determination of side chain specificity for pockets in class I MHC molecules. Mol Immunol. 1996, 33 (16): 1231-9. 10.1016/S0161-5890(96)00090-9.
CAS
PubMed
Google Scholar
Vasmatzis G, et al: TcR recognition of the MHC-peptide dimer: structural properties of a ternary complex. J Mol Biol. 1996, 261 (1): 72-89. 10.1006/jmbi.1996.0442.
CAS
PubMed
Google Scholar
Sezerman U, Vajda S, DeLisi C: Free energy mapping of class I MHC molecules and structural determination of bound peptides. Protein Sci. 1996, 5 (7): 1272-81. 10.1002/pro.5560050706.
PubMed Central
CAS
PubMed
Google Scholar
Weng Z, Vajda S, Delisi C: Prediction of protein complexes using empirical free energy functions. Protein Sci. 1996, 5 (4): 614-26. 10.1002/pro.5560050406.
PubMed Central
CAS
PubMed
Google Scholar
Rosenfeld R, et al: Flexible docking of peptides to class I major-histocompatibility-complex receptors. Genet Anal. 1995, 12 (1): 1-21.
CAS
PubMed
Google Scholar
Vajda S, et al: Effect of conformational flexibility and solvation on receptor-ligand binding free energies. Biochemistry. 1994, 33 (47): 13977-88. 10.1021/bi00251a004.
CAS
PubMed
Google Scholar
Rosenfeld R, et al: Computing the structure of bound peptides. Application to antigen recognition by class I major histocompatibility complex receptors. J Mol Biol. 1993, 234 (3): 515-21. 10.1006/jmbi.1993.1607.
CAS
PubMed
Google Scholar
Sezerman U, et al: Toward computational determination of peptide-receptor structure. Protein Sci. 1993, 2 (11): 1827-43. 10.1002/pro.5560021105.
PubMed Central
CAS
PubMed
Google Scholar
Takeshita T, et al: Role of conserved regions of class I MHC molecules in the activation of CD8+ cytotoxic T lymphocytes by peptide and purified cell-free class I molecules. Int Immunol. 1993, 5 (9): 1129-38. 10.1093/intimm/5.9.1129.
CAS
PubMed
Google Scholar
Cornette JL, et al: Graphical representations of the class I MHC cleft. J Mol Graph. 1993, 11 (3): 174-9. 10.1016/0263-7855(93)80069-4. 187
CAS
PubMed
Google Scholar
Garcia F, et al: An HLA-B27 polymorphism (B*2710) that is critical for T-cell recognition has limited effects on peptide specificity. Tissue Antigens. 1998, 51 (1): 1-9. 10.1111/j.1399-0039.1998.tb02941.x.
CAS
PubMed
Google Scholar
Rognan D, et al: Fine specificity of antigen binding to two class I major histocompatibility proteins (B*2705 and B*2703) differing in a single amino acid residue. J Comput Aided Mol Des. 1997, 11 (5): 463-78. 10.1023/A:1007963901092.
CAS
PubMed
Google Scholar
Scapozza L, et al: Molecular dynamics and structure-based drug design for predicting non-natural nonapeptide binding to a class I MHC protein. Acta Crystallogr D Biol Crystallogr. 1995, 51 (Pt 4): 541-9. 10.1107/S0907444995002678.
CAS
PubMed
Google Scholar
Rognan D, et al: Rational design of nonnatural peptides as high-affinity ligands for the HLA-B*2705 human leukocyte antigen. Proc Natl Acad Sci U S A. 1995, 92 (3): 753-7. 10.1073/pnas.92.3.753.
PubMed Central
CAS
PubMed
Google Scholar
Rognan D, et al: Molecular dynamics simulation of MHC-peptide complexes as a tool for predicting potential T cell epitopes. Biochemistry. 1994, 33 (38): 11476-85. 10.1021/bi00204a009.
CAS
PubMed
Google Scholar
Rognan D, et al: Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein. Proteins. 1992, 13 (1): 70-85. 10.1002/prot.340130107.
CAS
PubMed
Google Scholar
Caflisch A, Niederer P, Anliker M: Monte Carlo docking of oligopeptides to proteins. Proteins. 1992, 13 (3): 223-30. 10.1002/prot.340130305.
CAS
PubMed
Google Scholar
Lim JS, et al: Selection of peptides that bind to the HLA-A2.1 molecule by molecular modelling. Mol Immunol. 1996, 33 (2): 221-30. 10.1016/0161-5890(95)00065-8.
CAS
PubMed
Google Scholar
Androulakis IP, et al: A predictive method for the evaluation of peptide binding in pocket 1 of HLA-DRB1 via global minimization of energy interactions. Proteins. 1997, 29 (1): 87-102. 10.1002/(SICI)1097-0134(199709)29:1<87::AID-PROT7>3.0.CO;2-C.
CAS
PubMed
Google Scholar
Painter CA, et al: Model for the peptide-free conformation of class II MHC proteins. PLoS One. 2008, 3 (6): e2403-10.1371/journal.pone.0002403.
PubMed Central
PubMed
Google Scholar
Zacharias M, Springer S: Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: a molecular dynamics simulation study. Biophys J. 2004, 87 (4): 2203-14. 10.1529/biophysj.104.044743.
PubMed Central
CAS
PubMed
Google Scholar
Yaneva R, Springer S, Zacharias M: Flexibility of the MHC class II peptide binding cleft in the bound, partially filled, and empty states: a molecular dynamics simulation study. Biopolymers. 2009, 91 (1): 14-27. 10.1002/bip.21078.
CAS
PubMed
Google Scholar
Froloff N, Windemuth A, Honig B: On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions. Protein Sci. 1997, 6 (6): 1293-301. 10.1002/pro.5560060617.
PubMed Central
CAS
PubMed
Google Scholar
Arora N, Bashford D: Solvation energy density occlusion approximation for evaluation of desolvation penalties in biomolecular interactions. Proteins. 2001, 43 (1): 12-27. 10.1002/1097-0134(20010401)43:1<12::AID-PROT1013>3.0.CO;2-7.
CAS
PubMed
Google Scholar
Knapp B, et al: 3-Layer-based analysis of peptide-MHC interaction: in silico prediction, peptide binding affinity and T cell activation in a relevant allergen-specific model. Mol Immunol. 2009, 46 (8-9): 1839-44. 10.1016/j.molimm.2009.01.009.
CAS
PubMed
Google Scholar
Michielin O, Karplus M: Binding free energy differences in a TCR-peptide-MHC complex induced by a peptide mutation: a simulation analysis. J Mol Biol. 2002, 324 (3): 547-69. 10.1016/S0022-2836(02)00880-X.
CAS
PubMed
Google Scholar
Michielin O, Luescher I, Karplus M: Modeling of the TCR-MHC-peptide complex. J Mol Biol. 2000, 300 (5): 1205-35. 10.1006/jmbi.2000.3788.
CAS
PubMed
Google Scholar
Cuendet MA, Michielin O: Protein-protein interaction investigated by steered molecular dynamics: the TCR-pMHC complex. Biophys J. 2008, 95 (8): 3575-90. 10.1529/biophysj.108.131383.
PubMed Central
CAS
PubMed
Google Scholar
Genchev GZ, et al: Mechanical signaling on the single protein level studied using steered molecular dynamics. Cell Biochem Biophys. 2009, 55 (3): 141-52. 10.1007/s12013-009-9064-5.
CAS
PubMed
Google Scholar
Schlitter J, Engels M, Kruger P: Targeted Molecular-Dynamics - a New Approach for Searching Pathways of Conformational Transitions. Journal of Molecular Graphics. 1994, 12 (2): 84-89. 10.1016/0263-7855(94)80072-3.
CAS
PubMed
Google Scholar
Schlitter J, et al: Targeted Molecular-Dynamics Simulation of Conformational Change - Application to the T[--]R Transition in Insulin. Molecular Simulation. 1993, 10 (2-6): 291-10.1080/08927029308022170. &
CAS
Google Scholar
Engels M, et al: The T-Reversible-Arrow-R Structural Transition of Insulin - Pathways Suggested by Targeted Energy Minimization. Protein Engineering. 1992, 5 (7): 669-677. 10.1093/protein/5.7.669.
CAS
PubMed
Google Scholar
Grubmuller H, Heymann B, Tavan P: Ligand binding: Molecular mechanics calculation of the streptavidin biotin rupture force. Science. 1996, 271 (5251): 997-999. 10.1126/science.271.5251.997.
CAS
PubMed
Google Scholar
Dudko OK, Hummer G, Szabo A: Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105 (41): 15755-15760. 10.1073/pnas.0806085105.
PubMed Central
CAS
PubMed
Google Scholar
Dudko OK, et al: Extracting kinetics from single-molecule force spectroscopy: Nanopore unzipping of DNA hairpins. Biophysical Journal. 2007, 92 (12): 4188-4195. 10.1529/biophysj.106.102855.
PubMed Central
CAS
PubMed
Google Scholar
Gopich I, Hummer G, Szabo A: Theory and single molecule experiments. Abstracts of Papers of the American Chemical Society. 2003, 226: U287-U287.
Google Scholar
Hummer G, Szabo A: Kinetics from nonequilibrium single-molecule pulling experiments. Biophysical Journal. 2003, 85 (1): 5-15. 10.1016/S0006-3495(03)74449-X.
PubMed Central
CAS
PubMed
Google Scholar
Hummer G, Szabo A: Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (7): 3658-3661. 10.1073/pnas.071034098.
PubMed Central
CAS
PubMed
Google Scholar
Park S, Schulten K: Calculating potentials of mean force from steered molecular dynamics simulations. Journal of Chemical Physics. 2004, 120 (13): 5946-5961. 10.1063/1.1651473.
CAS
PubMed
Google Scholar
Park S, et al: Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. Journal of Chemical Physics. 2003, 119 (6): 3559-3566. 10.1063/1.1590311.
CAS
Google Scholar
Wan S, Coveney P, Flower DR: Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: can the alpha3 and beta2m domains be neglected?. J Comput Chem. 2004, 25 (15): 1803-13. 10.1002/jcc.20100.
CAS
PubMed
Google Scholar
Wan S, Coveney PV, Flower DR: Peptide recognition by the T cell receptor: comparison of binding free energies from thermodynamic integration, Poisson-Boltzmann and linear interaction energy approximations. Philos Transact A Math Phys Eng Sci. 2005, 363 (1833): 2037-53. 10.1098/rsta.2005.1627.
CAS
Google Scholar
Wan S, Coveney PV, Flower DR: Molecular basis of peptide recognition by the TCR: affinity differences calculated using large scale computing. J Immunol. 2005, 175 (3): 1715-23.
CAS
PubMed
Google Scholar
Wan S, Coveney PV, Flower DR: Molecular dynamics simulations: bring biomolecular structures alive on a computer. Methods Mol Biol. 2007, 409: 321-39. full_text.
CAS
PubMed
Google Scholar
Wan S, Flower DR, Coveney PV: Toward an atomistic understanding of the immune synapse: large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC-CD4 complex. Mol Immunol. 2008, 45 (5): 1221-30. 10.1016/j.molimm.2007.09.022.
CAS
PubMed
Google Scholar
Davis MM, et al: T cells as a self-referential, sensory organ. Annu Rev Immunol. 2007, 25: 681-95. 10.1146/annurev.immunol.24.021605.090600.
CAS
PubMed
Google Scholar
Krogsgaard M, Davis MM: How T cells 'see' antigen. Nat Immunol. 2005, 6 (3): 239-45. 10.1038/ni1173.
CAS
PubMed
Google Scholar
Davis MM, et al: Dynamics of cell surface molecules during T cell recognition. Annu Rev Biochem. 2003, 72: 717-42. 10.1146/annurev.biochem.72.121801.161625.
CAS
PubMed
Google Scholar
Irvine DJ, et al: Direct observation of ligand recognition by T cells. Nature. 2002, 419 (6909): 845-9. 10.1038/nature01076.
CAS
PubMed
Google Scholar
Grakoui A, et al: The immunological synapse: a molecular machine controlling T cell activation. Science. 1999, 285 (5425): 221-7. 10.1126/science.285.5425.221.
CAS
PubMed
Google Scholar
Lee KH, et al: The immunological synapse balances T cell receptor signaling and degradation. Science. 2003, 302 (5648): 1218-22. 10.1126/science.1086507.
CAS
PubMed
Google Scholar
Qi SY, Groves JT, Chakraborty AK: Synaptic pattern formation during cellular recognition. Proc Natl Acad Sci U S A. 2001, 98 (12): 6548-53. 10.1073/pnas.111536798.
PubMed Central
CAS
PubMed
Google Scholar
Weikl TR, Lipowsky R: Pattern formation during T-cell adhesion. Biophys J. 2004, 87 (6): 3665-78. 10.1529/biophysj.104.045609.
PubMed Central
CAS
PubMed
Google Scholar
Cornell WD, et al: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). Journal of the American Chemical Society. 1996, 118 (9): 2309-2309. 10.1021/ja955032e.
CAS
Google Scholar
Cornell WD, et al: A 2nd Generation Force-Field for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. Journal of the American Chemical Society. 1995, 117 (19): 5179-5197. 10.1021/ja00124a002.
CAS
Google Scholar
Guvench O, MacKerell AD: Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol. 2008, 443: 63-88. full_text.
CAS
PubMed
Google Scholar
Shen MY, Freed KF: All-atom fast protein folding simulations: The villin headpiece. Proteins-Structure Function and Genetics. 2002, 49 (4): 439-445. 10.1002/prot.10230.
CAS
Google Scholar
Shi G, Kindratenko V: Implementation of NAMD molecular dynamics non-bonded force-field on the Cell Broadband Engine processor. 2008 Ieee International Symposium on Parallel & Distributed Processing. 2008, 1-8: 2985-2992. 3789
Google Scholar
Phillips JC, et al: Scalable molecular dynamics with NAMD. Journal of Computational Chemistry. 2005, 26 (16): 1781-1802. 10.1002/jcc.20289.
PubMed Central
CAS
PubMed
Google Scholar
Nelson MT, et al: NAMD: A parallel, object oriented molecular dynamics program. International Journal of Supercomputer Applications and High Performance Computing,. 1996, 10 (4): 251-268. 10.1177/109434209601000401.
Google Scholar
Fadrna E, et al: Human telomeric G-DNA - A test example for force field adjustment. Journal of Biomolecular Structure & Dynamics. 2007, 24 (6): 709-709.
Google Scholar
Anisimov VM, et al: Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. Journal of Chemical Theory and Computation. 2005, 1 (1): 153-168. 10.1021/ct049930p.
Google Scholar
Ward WH, Holdgate GA: Isothermal titration calorimetry in drug discovery. Prog Med Chem. 2001, 38: 309-76. full_text.
CAS
PubMed
Google Scholar
Freyer MW, Lewis EA: Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol. 2008, 84: 79-113. full_text.
CAS
PubMed
Google Scholar
de Azevedo WF, Dias R: Experimental approaches to evaluate the thermodynamics of protein-drug interactions. Curr Drug Targets. 2008, 9 (12): 1071-6. 10.2174/138945008786949441.
PubMed
Google Scholar
Hattotuwagama CK, Davies MN, Flower DR: Receptor-ligand binding sites and virtual screening. Curr Med Chem. 2006, 13 (11): 1283-304. 10.2174/092986706776873005.
CAS
PubMed
Google Scholar
Rognan D, et al: Predicting binding affinities of protein ligands from three-dimensional models: Application to peptide binding to class I major histocompatibility proteins. Journal of Medicinal Chemistry. 1999, 42 (22): 4650-4658. 10.1021/jm9910775.
CAS
PubMed
Google Scholar
Logean A, Sette A, Rognan D: Customized versus universal scoring functions: Application to class I MHC-peptide binding free energy predictions. Bioorganic & Medicinal Chemistry Letters. 2001, 11 (5): 675-679.
CAS
Google Scholar
Altuvia Y, et al: A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Hum Immunol. 1997, 58 (1): 1-11. 10.1016/S0198-8859(97)00210-3.
CAS
PubMed
Google Scholar
Altuvia Y, Schueler O, Margalit H: Ranking potential binding peptides to MHC molecules by a computational threading approach. J Mol Biol. 1995, 249 (2): 244-50. 10.1006/jmbi.1995.0293.
CAS
PubMed
Google Scholar
Miyazawa S, Jernigan RL: Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996, 256 (3): 623-44. 10.1006/jmbi.1996.0114.
CAS
PubMed
Google Scholar
Schueler-Furman O, et al: Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci. 2000, 9 (9): 1838-46. 10.1110/ps.9.9.1838.
PubMed Central
CAS
PubMed
Google Scholar
Davies MN, Flower DR: Static energy analysis of MHC class I and class II peptide-binding affinity. Methods Mol Biol. 2007, 409: 309-20. full_text.
CAS
PubMed
Google Scholar
Tong JC, et al: In silico characterization of immunogenic epitopes presented by HLA-Cw*0401. Immunome Res. 2007, 3: 7-10.1186/1745-7580-3-7.
PubMed Central
PubMed
Google Scholar
Knapp B, et al: A critical cross-validation of high throughput structural binding prediction methods for pMHC. J Comput Aided Mol Des. 2009, 23 (5): 301-7. 10.1007/s10822-009-9259-2.
CAS
PubMed
Google Scholar
Zhang H, et al: Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS One. 2010, 5 (2): e9272-10.1371/journal.pone.0009272.
PubMed Central
PubMed
Google Scholar
Sadiq SK, et al: Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases. J Chem Inf Model. 2008, 48 (9): 1909-19. 10.1021/ci8000937.
CAS
PubMed
Google Scholar
Dewar MJS, Thiel W: Ground-States of Molecules .38. Mndo Method - Approximations and Parameters. Journal of the American Chemical Society. 1977, 99 (15): 4899-4907. 10.1021/ja00457a004.
CAS
Google Scholar
Dewar MJS, et al: Am1 - a New General-Purpose Quantum-Mechanical Molecular-Model (Vol 107, Pg 3902, 1985). Journal of the American Chemical Society. 1993, 115 (12): 5348-5348. 10.1021/ja00065a080.
CAS
Google Scholar
Dewar MJS, et al: The Development and Use of Quantum-Mechanical Molecular-Models .76. Am1 - a New General-Purpose Quantum-Mechanical Molecular-Model. Journal of the American Chemical Society. 1985, 107 (13): 3902-3909. 10.1021/ja00299a024.
CAS
Google Scholar
Stewart JJP: Optimization of Parameters for Semiempirical Methods .1. Method. Journal of Computational Chemistry. 1989, 10 (2): 209-220. 10.1002/jcc.540100208.
CAS
Google Scholar
Stewart JJP: Optimization of Parameters for Semiempirical Methods .2. Applications. Journal of Computational Chemistry. 1989, 10 (2): 221-264. 10.1002/jcc.540100209.
CAS
Google Scholar
Lee TS, Lewis JP, Yang WT: Linear-scaling quantum mechanical calculations of biological molecules: The divide-and-conquer approach. Computational Materials Science. 1998, 12 (3): 259-277. 10.1016/S0927-0256(98)00029-9.
CAS
Google Scholar
Lewis JP, et al: A linear-scaling quantum mechanical investigation of cytidine deaminase. Journal of Computational Physics. 1999, 151 (1): 242-263. 10.1006/jcph.1999.6219.
CAS
Google Scholar
Lewis JP, et al: Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation. Journal of the American Chemical Society. 1998, 120 (22): 5407-5410. 10.1021/ja973522w.
CAS
Google Scholar
Lewis JP, et al: Quantum mechanical methods for large biomolecular systems: Applications in the study of the cytidine deaminase enzyme. Biophysical Journal. 1998, 74 (2): A132-A132.
Google Scholar
Stewart JJP: Application of the PM6 method to modeling proteins. Journal of Molecular Modeling. 2009, 15 (7): 765-805. 10.1007/s00894-008-0420-y.
CAS
PubMed
Google Scholar
Ohno K, et al: Application of an integrated MOZYME plus DFT method to pKa calculations for proteins. Chemical Physics Letters. 2001, 341 (34): 387-392. 10.1016/S0009-2614(01)00499-7.
CAS
Google Scholar
Lin H, Truhlar DG: QM/MM: what have we learned, where are we, and where do we go from here?. Theoretical Chemistry Accounts. 2007, 117 (2): 185-199. 10.1007/s00214-006-0143-z.
CAS
Google Scholar
Li Y, et al: QM/MM study of epitope peptides binding to HLA-A*0201: the roles of anchor residues and water. Chem Biol Drug Des. 2009, 74 (6): 611-8. 10.1111/j.1747-0285.2009.00896.x.
CAS
PubMed
Google Scholar
Klepeis JL, et al: Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology. 2009, 19 (2): 120-127. 10.1016/j.sbi.2009.03.004.
CAS
PubMed
Google Scholar
Sanbonmatsu KY, Tung CS: High performance computing in biology: Multimillion atom simulations of nanoscale systems. Journal of Structural Biology. 2007, 157 (3): 470-480. 10.1016/j.jsb.2006.10.023.
PubMed Central
CAS
PubMed
Google Scholar
Freddolino PL, et al: Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure. 2006, 14 (3): 437-49. 10.1016/j.str.2005.11.014.
CAS
PubMed
Google Scholar
Sanbonmatsu KY, Tung CS: Large-scale simulations of the ribosome. Biophysical Journal. 2004, 86 (1): 415a-415a.
Google Scholar
Sener MK, et al: Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci U S A. 2007, 104 (40): 15723-8. 10.1073/pnas.0706861104.
PubMed Central
CAS
PubMed
Google Scholar
Takamori S, et al: Molecular anatomy of a trafficking organelle. Cell. 2006, 127 (4): 831-46. 10.1016/j.cell.2006.10.030.
CAS
PubMed
Google Scholar
Saksena RS, et al: Real science at the petascale. Philos Transact A Math Phys Eng Sci. 2009, 367 (1897): 2557-71. 10.1098/rsta.2009.0049.
Google Scholar
Baschnagel J, et al: Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives. Advances in Polymer Science: Viscoelasticity, Atomistic Models, Statistical Chemistry. 2000, 152: 41-156. full_text.
CAS
Google Scholar
Wan S, Flower DR, Coveney PV: Toward an atomistic understanding of the immune synapse: Large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC-CD4 complex. Molecular Immunology. 2008, 45 (5): 1221-1230. 10.1016/j.molimm.2007.09.022.
CAS
PubMed
Google Scholar
Ala-Nissila T, Ferrando R, Ying SC: Collective and single particle diffusion on surfaces. Advances in Physics. 2002, 51 (3): 949-1078. 10.1080/00018730110107902.
CAS
Google Scholar
Gay JG, Berne BJ: Modification of the Overlap Potential to Mimic a Linear Site-Site Potential. Journal of Chemical Physics. 1981, 74 (6): 3316-3319. 10.1063/1.441483.
CAS
Google Scholar
Coombs D, et al: Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs. Biophys J. 2004, 86 (3): 1408-23. 10.1016/S0006-3495(04)74211-3.
PubMed Central
CAS
PubMed
Google Scholar
Teft WA, Madrenas J: The immunological synapse as a novel therapeutic target. Curr Opin Investig Drugs. 2006, 7 (11): 1008-13.
CAS
PubMed
Google Scholar
Karplus M, McCammon JA: Molecular dynamics simulations of biomolecules. Nature Structural Biology. 2002, 9 (9): 646-52. 10.1038/nsb0902-646.
CAS
PubMed
Google Scholar
Flower DR: Bioinformatics for vaccinology. 2008, Chichester: Wiley, xix-292.
Google Scholar
Tsurui H, Takahashi T: Prediction of T-cell epitope. J Pharmacol Sci. 2007, 105 (4): 299-316. 10.1254/jphs.CR0070056.
CAS
PubMed
Google Scholar
Gowthaman U, Agrewala JN: In silico methods for predicting T-cell epitopes: Dr Jekyll or Mr Hyde?. Expert Rev Proteomics. 2009, 6 (5): 527-37. 10.1586/epr.09.71.
CAS
PubMed
Google Scholar
Wan SZ, Coveney P, Flower DR: Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: Can the alpha 3 and beta(2)m domains be neglected?. Journal of Computational Chemistry. 2004, 25 (15): 1803-1813. 10.1002/jcc.20100.
CAS
PubMed
Google Scholar
Wan SZ, Coveney PV, Flower DR: Molecular basis of peptide recognition by the TCR: Affinity differences calculated using large scale computing. J Immunol. 2005, 175 (3): 1715-1723.
CAS
PubMed
Google Scholar