Remington JS, McLeod R, Thulliez P, Wilson C, Desmonts G: Congenital Toxoplasmosis. In Infectious Diseases of the Fetus and Newborn Infant. 7th edition. Edited by: Remington JS, Klein J, Wilson C. Philadelphia: W.B Saunders; 2010:in press.
Google Scholar
McLeod R, Mack D, Foss R, Boyer K, Withers S, Levin S, Hubbel J: Levels of pyrimethamine in sera and cerebrospinal and ventricular fluids from infants treated for congenital toxoplasmosis.
Antimicrob Ag Chemother 1992, 36:1040–8.
CAS
Google Scholar
McLeod R, Kieffer F, Sautter M, Hosten T, Pelloux H: Why prevent, diagnose and treat congenital toxoplasmosis?
Mem Inst Oswaldo Cruz 2009, 104:320–344.
Article
PubMed
Google Scholar
McAuley J, Boyer KM, Patel D, Mets M, Swisher C, Roizen N, Wolters C, Stein L, Stein M, Schey W, Remington J, Meier P, Johnson D, Heydemann P, Holfels E, Withers S, Mack D, Brown C, Patton D, McLeod R: Early and longitudinal evaluations of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago Collaborative Treatment Trial.
Clin Infect Dis 1994, 18:38–72.
CAS
PubMed
Google Scholar
Phan L, Kasza K, Jalbrzikowski J, Noble AG, Latkany P, Kuo A, Mieler W, Meyers S, Rabiah P, Boyer K, Swisher C, Mets M, Roizen N, Cezar S, Sautter M, Remington J, Meier P, McLeod R, Toxoplasmosis Study Group: Longitudinal study of new eye lesions in children with toxoplasmosis who were not treated during the first year of life.
Am J Ophthalmol 2008, 146:375–84.
Article
PubMed
Google Scholar
Luft BJ, Remington JS: Toxoplasmic encephalitis in AIDS.
Clin Infect Dis 1992, 15:211–222.
CAS
PubMed
Google Scholar
Jacobs L: Toxoplasma gondii:
parasitology and transmission.
Bull N Y Acad Med 1974, 50:128–145.
CAS
PubMed
Google Scholar
Dubey JP: The History and Life Cycle of
Toxoplasma gondii
. In Toxoplasma gondii: The Model Apicomplexan: Perspectives and Methods. Edited by: Weiss LM, Kim K. London: Academic Press; 2007:1–17.
Chapter
Google Scholar
Boyer K, Holfels E, Roizen N, Swisher C, Mack D, Remington J, Withers S, Meier P, Karrison T, McLeod R: Risk factors for
Toxplasma gondii
infection in mothers of infants with congenital toxoplasmosis: implications for prenatal management and screening.
AJOG 2005, 192:564–71.
Article
Google Scholar
McLeod R, Frenkel JK, Estes RG, Mack DG, Eisenhauer P, Gibori G: Subcutaneous and intestinal vaccination with tachyzoites of
Toxoplasma gondii
and acquisition of immunity to peroral and congenital
Toxoplasma
challenge.
J Immunol 1988, 140:1632–7.
CAS
PubMed
Google Scholar
Buxton D, Thomson K, Maley S, Wright S, Bos HJ: Vaccination of sheep with a live incomplete strain (S48) of
Toxoplasma gondii
and their immunity to challenge when pregnant.
Vet Rec 1991, 129:89–93.
Article
CAS
PubMed
Google Scholar
Lu F, Huang S, Kasper LH: The temperature-sensitive mutants of
Toxoplasma gondii
and ocular toxoplasmosis.
Vaccine 2009, 27:573–580.
Article
CAS
PubMed
Google Scholar
Mévélec MN, Ducournau C, Bassuny Ismael A, Olivier M, Sèche E, Lebrun M, Bout D, Dimier-Poisson I: Mic1–3 Knockout
Toxoplasma gondii
is a good candidate for a vaccine against
T. gondii
-induced abortion in sheep.
Vet Res 2010, 41:49.
Article
PubMed
Google Scholar
Gigley JP, Fox BA, Bzik DJ: Cell-mediated immunity to
Toxoplasma gondii
develops primarily by local Th-1 host immune responses in the absence of parasite replication.
J Immunol 2009, 182:1069–1078.
CAS
PubMed
Google Scholar
Hutson SL, Mui E, Kinsley K, Witola WH, Behnke MS, El Bissati K, Muench SP, Rohrman B, Liu SR, Wollmann R, Ogata Y, Sarkeshik S, Yates JR III, McLeod R: T. gondii
RP Promoters & Knockdown Reveal Molecular Pathways Associated with Proliferation and Cell-Cycle Arrest.
PLoS ONE 2010,5(11):e14057.
Article
PubMed
Google Scholar
Blanchard N, Gonzalez F, Schaeffer M, Joncker NT, Cheng T, Shastri AJ, Robey EA, Shastri N: Immunodominant, protective response to the parasite
Toxoplasma gondii
requires antigen processing in the endoplasmic reticulum.
Nat Immunol 2008, 9:937–944.
Article
CAS
PubMed
Google Scholar
Bui HH, Sidney J, Li W, Fusseder N, Sette A: Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines.
BMC Bioinformatics 2007, 8:361.
Article
PubMed
Google Scholar
Tan TG, Mui E, Cong H, Witola WH, Montpetit A, Muench SP, Sidney J, Alexander J, Sette A, Grigg M, Maewal A, McLeod R: Identification of
T. gondii
epitopes, adjuvants, and host genetic factors that influence protection of mice and humans.
Vaccine 2010, 28:3977–3989.
Article
CAS
PubMed
Google Scholar
Panina-Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A: Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells.
Eur J Immunol 1989, 19:2237–2242.
Article
CAS
PubMed
Google Scholar
Chen YZ, Liu G, Senju S, Wang Q, Irie A, Haruta M, Matsui M, Yasui F, Kohara M, Nishimura Y: Identification of SARS-COV spike protein-derived and HLA-A2-restricted human CTL epitopes by using a new muramyl dipeptidederivative adjuvant.
Int J Immunopathol Pharmacol 2010, 23:165–177.
CAS
PubMed
Google Scholar
Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL, Coler RN, Reed SG: A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant Mycobacterium tuberculosis.
Sci Transl Med 2010, 2:53ra74.
PubMed
Google Scholar
O'Hagan DT, Tsai T, Reed S: Emulsion-Based Adjuvants for Improved Influenza Vaccines.
Influenza Vaccines for the Future 2011, in press.
Google Scholar
Reed SG, Bertholet S, Coler RN, Friede M: New horizons in adjuvants for vaccine development.
Trends Immunol 2009, 30:S23–32.
Article
Google Scholar
Persing DH, Coler RN, Lacy MJ, Johnson DA, Baldridge JR, Hershberg RM, Reed SG: Taking toll: lipid A mimetics as adjuvants and immunomodulators.
Trends Microbiol 2002, 10:S32–37.
Article
CAS
PubMed
Google Scholar
Deliyannis G, Jackson DC, Ede NJ, Zeng W, Hourdakis I, Sakabetis E, Brown LE: Induction of long-term memory CD8(+) T cells for recall of viral clearing responses against influenza virus.
J Virol 2002, 76:4212–4221.
Article
CAS
PubMed
Google Scholar
BenMohamed L, Wechsler SL, Nesburn AB: : Lipopeptide vaccines--yesterday, today, and tomorrow.
Lancet Infect Dis 2002, 2:425–431.
Article
CAS
PubMed
Google Scholar
Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC: Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines.
J Immunol 2002, 169:4905–4912.
PubMed
Google Scholar
Chua BY, Zeng W, Jackson DC: Synthesis of toll-like receptor-2 targeting lipopeptides as self-adjuvanting vaccines.
Methods Mol Biol 2008, 494:247–261.
Article
CAS
PubMed
Google Scholar
Tsunoda I, Sette A, Fujinami RS, Oseroff C, Ruppert J, Dahlberg C, Southwood S, Arrhenius T, Kuang LQ, Kubo RT, Chesnut RW, Ishioka GY: Lipopeptide particles as the immunologically active component of CTL inducing vaccines.
Vaccine 1999, 17:675–685.
Article
CAS
PubMed
Google Scholar
Brown CR, McLeod R: Class I MHC genes and CD8+ T cells determine cyst number in
Toxoplasma gondii
infection.
J Immunol 1990, 145:3438–3441.
CAS
PubMed
Google Scholar
Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A: Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated
Toxoplasma gondii
vaccine.
J Immunol 1991, 146:286–292.
CAS
PubMed
Google Scholar
Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A: Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with
Toxoplasma gondii
.
J Immunol 1992, 149:175–180.
CAS
PubMed
Google Scholar
Livingston BD, Alexander J, Crimi C, Oseroff C, Celis E, Daly K, Guidotti LG, Chisari FV, Fikes J, Chesnut RW, Sette A: Alterred helper T lymphocyte function associated with chronic hepatitis B virus infection and its role in response to therapeutic vaccination in humans.
J Immunol 1999, 162:3088–3095.
CAS
PubMed
Google Scholar
Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, Chisari FV, Guidotti LG, Chesnut RW, Livingston B, Sette A: The optimization of helper T lymphocyte (HTL) function in vaccine development.
Immunol Res 1998, 18:79–92.
Article
CAS
PubMed
Google Scholar
Alexander J, Oseroff C, Dahlberg C, Qin M, Ishioka G, Beebe M, Fikes J, Newman M, Chesnut RW, Morton PA, Fok K, Appella E, Sette A: A decaepitope polypeptide primes for multiple CD8+ IFN-gamma and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery.
J Immunol 2002, 168:6189–6198.
CAS
PubMed
Google Scholar
Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, Mansur DS, Weingart R, Schmidt RR, Golenbock DT, Gazzinelli RT, Schwarz RT: Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from
Toxoplasma gondii
.
J Immunol 2007, 179:1129–1137.
CAS
PubMed
Google Scholar
Kim SK, Karasov A, Boothroyd JC: Bradyzoite-specific surface antigen SRS9 plays a role in maintaining
Toxoplasma gondii
persistence in the brain and in host control of parasite replication in the intestine.
Infect Immun 2007, 75:1626–1634.
Article
CAS
PubMed
Google Scholar
Saeij JP, Arrizabalaga G, Boothroyd JC: A cluster of four surface antigen genes specifically expressed in bradyzoites, SAG2CDXY, plays an important role in
Toxoplasma gondii
persistence.
Infect Immun 2008, 76:2402–2410.
Article
CAS
PubMed
Google Scholar
Saeij JP, Boyle JP, Grigg ME, Arrizabalaga G, Boothroyd JC: Bioluminescence imaging of
Toxoplasma gondii
infection in living mice reveals dramatic differences between strains.
Infect Immun 2005, 73:695–702.
Article
CAS
PubMed
Google Scholar
Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A: A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus.
Nat Biotechnol 2006, 24:817–819.
Article
CAS
PubMed
Google Scholar
Gulukota K, Sidney J, Sette A, DeLisi C: Two complementary methods for predicting peptides binding major histocompatibility complex molecules.
J Mol Biol 1997, 267:1258–1267.
Article
CAS
PubMed
Google Scholar
Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B: : Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries.
Immunome Res 2008, 4:2.
Article
PubMed
Google Scholar
Sidney J, Southwood S, Oseroff C, del Guercio MF, Sette A, Grey HM: Chapter 18, Measurement of MHC/peptide interactions by gel filtration.
Curr Protoc Immunol 2001, Chapter 18:Unit 18.13.
Google Scholar
Cheng Y, Prusoff WH: Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.
Biochem Pharmacol 1973, 22:3099–3108.
Article
CAS
PubMed
Google Scholar